000864410 001__ 864410
000864410 005__ 20240711085555.0
000864410 0247_ $$2doi$$a10.1002/ese3.334
000864410 0247_ $$2Handle$$a2128/22918
000864410 0247_ $$2WOS$$aWOS:000479313100007
000864410 037__ $$aFZJ-2019-04195
000864410 082__ $$a620
000864410 1001_ $$00000-0002-9724-5965$$aFischer, Felix$$b0$$eCorresponding author
000864410 245__ $$aEffect of internal hydrocarbon reforming during coupled operation of a biomass gasifier with hot gas cleaning and SOFC stacks
000864410 260__ $$aChichester [u.a.]$$bWiley$$c2019
000864410 3367_ $$2DRIVER$$aarticle
000864410 3367_ $$2DataCite$$aOutput Types/Journal article
000864410 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569242501_16863
000864410 3367_ $$2BibTeX$$aARTICLE
000864410 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864410 3367_ $$00$$2EndNote$$aJournal Article
000864410 520__ $$aIn the context of energy transition and climate change, a combination of highly efficient modern solid oxide fuel cells (SOFC) and thermo‐chemical conversion of biogenic residues could complement other intermittent renewable sources such as wind and solar. In order to reduce required gas cleaning efforts and to increase the process efficiency, the influence of hydrocarbons on SOFC performance is experimentally investigated in this study. For the first time, the operation of Ni/YSZ anode‐supported cells in Jülich F10 stacks is performed with pre‐reformed and with bio‐syngas containing full hydrocarbon content at realistic current densities. Sulfur and other impurities were removed in both cases. No degradation could be observed within normal operation on clean gas. With the tar reformer bypassed, the pressure drop over the stack increased due to severe carbon deposition on the anode substrate and the nickel current collector mesh inside the SOFC stack, so that operation had to be terminated after five hours. This behavior is different from single‐cell tests, where electrochemical degradation is the limiting factor. The results show that improvements are not only necessary for cell materials and that future research must also consider other stack components.
000864410 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000864410 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000864410 588__ $$aDataset connected to CrossRef
000864410 7001_ $$00000-0002-1980-2009$$aHauser, Michael$$b1
000864410 7001_ $$00000-0001-9626-2387$$aHauck, Maximilian$$b2
000864410 7001_ $$0P:(DE-HGF)0$$aHerrmann, Stephan$$b3
000864410 7001_ $$0P:(DE-HGF)0$$aFendt, Sebastian$$b4
000864410 7001_ $$0P:(DE-Juel1)165870$$aJeong, Hyeondeok$$b5
000864410 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b6$$ufzj
000864410 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b7$$ufzj
000864410 7001_ $$0P:(DE-HGF)0$$aSpliethoff, Hartmut$$b8
000864410 773__ $$0PERI:(DE-600)2720339-6$$a10.1002/ese3.334$$gp. ese3.334$$n4$$p1140-1153$$tEnergy Science & Engineering$$v7$$x2050-0505$$y2019
000864410 8564_ $$uhttps://juser.fz-juelich.de/record/864410/files/Fischer_et_al-2019-Energy_Science_%26_Engineering.pdf$$yOpenAccess
000864410 8564_ $$uhttps://juser.fz-juelich.de/record/864410/files/Fischer_et_al-2019-Energy_Science_%26_Engineering.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864410 909CO $$ooai:juser.fz-juelich.de:864410$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864410 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000864410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b6$$kFZJ
000864410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b7$$kFZJ
000864410 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000864410 9141_ $$y2019
000864410 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864410 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000864410 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864410 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864410 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY SCI ENG : 2017
000864410 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864410 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864410 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864410 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864410 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864410 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864410 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864410 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864410 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864410 920__ $$lyes
000864410 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000864410 9801_ $$aFullTexts
000864410 980__ $$ajournal
000864410 980__ $$aVDB
000864410 980__ $$aUNRESTRICTED
000864410 980__ $$aI:(DE-Juel1)IEK-1-20101013
000864410 981__ $$aI:(DE-Juel1)IMD-2-20101013