001     864410
005     20240711085555.0
024 7 _ |a 10.1002/ese3.334
|2 doi
024 7 _ |a 2128/22918
|2 Handle
024 7 _ |a WOS:000479313100007
|2 WOS
037 _ _ |a FZJ-2019-04195
082 _ _ |a 620
100 1 _ |a Fischer, Felix
|0 0000-0002-9724-5965
|b 0
|e Corresponding author
245 _ _ |a Effect of internal hydrocarbon reforming during coupled operation of a biomass gasifier with hot gas cleaning and SOFC stacks
260 _ _ |a Chichester [u.a.]
|c 2019
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1569242501_16863
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the context of energy transition and climate change, a combination of highly efficient modern solid oxide fuel cells (SOFC) and thermo‐chemical conversion of biogenic residues could complement other intermittent renewable sources such as wind and solar. In order to reduce required gas cleaning efforts and to increase the process efficiency, the influence of hydrocarbons on SOFC performance is experimentally investigated in this study. For the first time, the operation of Ni/YSZ anode‐supported cells in Jülich F10 stacks is performed with pre‐reformed and with bio‐syngas containing full hydrocarbon content at realistic current densities. Sulfur and other impurities were removed in both cases. No degradation could be observed within normal operation on clean gas. With the tar reformer bypassed, the pressure drop over the stack increased due to severe carbon deposition on the anode substrate and the nickel current collector mesh inside the SOFC stack, so that operation had to be terminated after five hours. This behavior is different from single‐cell tests, where electrochemical degradation is the limiting factor. The results show that improvements are not only necessary for cell materials and that future research must also consider other stack components.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hauser, Michael
|0 0000-0002-1980-2009
|b 1
700 1 _ |a Hauck, Maximilian
|0 0000-0001-9626-2387
|b 2
700 1 _ |a Herrmann, Stephan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fendt, Sebastian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jeong, Hyeondeok
|0 P:(DE-Juel1)165870
|b 5
700 1 _ |a Lenser, Christian
|0 P:(DE-Juel1)138081
|b 6
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 7
|u fzj
700 1 _ |a Spliethoff, Hartmut
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1002/ese3.334
|g p. ese3.334
|0 PERI:(DE-600)2720339-6
|n 4
|p 1140-1153
|t Energy Science & Engineering
|v 7
|y 2019
|x 2050-0505
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864410/files/Fischer_et_al-2019-Energy_Science_%26_Engineering.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864410/files/Fischer_et_al-2019-Energy_Science_%26_Engineering.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864410
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY SCI ENG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21