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Abstract 

Over the past decades, neuroimaging has become widely used to investigate structural 

and functional brain abnormality in neuropsychiatric disorders. The results of individual 

neuroimaging studies, however, are frequently inconsistent due to small and 

heterogeneous samples, analytical flexibility and publication bias towards positive 

findings. To consolidate the emergent findings towards clinically useful insight, meta-

analyses have been developed to integrate the results of studies and identify areas that 

are consistently involved in pathophysiology of particular neuropsychiatric disorders. 

However, it should be considered that the results of meta-analyses could be also divergent 

due to heterogeneity in search strategy, selection criteria, imaging modalities, behavioural 

tasks, and number of experiments, methods in data organization and statistical analysis, 

with multiple comparison thresholds. Following an introduction to the problem and the 

concepts of quantitative summaries of neuroimaging findings, we propose practical 

recommendations for clinicians and researchers for conducting transparent and 

methodologically sound meta-analyses. This should help to consolidate the search for 

convergent regional brain abnormality in neuropsychiatric disorders. 

 

Key words: Neuroimaging; Meta-analysis; Systematic review; Neuropsychiatric 

disorders; Guideline. 
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1. Introduction: 

For many years quantitative assessment of pathological changes in psychiatric or 

neurological patients’ living brains was hardly possible. During the last decades, however, 

neuroimaging technology has become a promising tool to quantify cerebral anatomy and 

indirectly, neuronal activity (Phillips, 2012). Nowadays, neuroimaging methods including 

task-based or resting-state functional magnetic resonance imaging (fMRI), Positron 

Emission Tomography (PET), Voxel-based morphometry (VBM) are widely applied to 

explore structural and functional brain alterations in various mental illnesses. The 

capabilities of these modalities provide valuable insight into pathophysiology as well as, 

opening the potential for differential diagnosis and treatment assessment (Eickhoff and 

Etkin, 2016; Goodkind, et al., 2015; Linden, 2012; McTeague, et al., 2017). In spite of the 

substantial advances, results of the individual neuroimaging studies are largely 

inconsistent and often conflicting. These inconsistencies could be attributed to small 

number of subjects that cannot easily be increased (due to constraints on available patient 

pool, expenses and technical barriers), various structural or functional modalities, flexible 

experimental designs, and different preprocessing and statistical approaches (Button, et 

al., 2013; Muller, et al., 2018). The other inconsistency in neuroimaging studies pertains 

to heterogeneous clinical populations, which originates from the diagnostic criteria for 

specific neuropsychiatric disorders, the healthcare system and cultural diversities. 

Furthermore, there seems to be a substantial bias towards publishing positive results, 

which with reports on technically inflated false positives rates (Eklund, et al., 2016), may 

contribute to the possibility of a large amount of spurious findings. In addition, it has been 

argued that the appeal for publishing new positive findings frequently obscures the truth 

about underlying mechanisms behind such disorders, even with limited replication studies 

(Fletcher and Grafton, 2013; Tahmasian M, 2018; Yeung, 2017).  

The main goal of clinical neuroimaging studies is to identify brain region(s) 

associated with cognitive or behavioural dysfunctions. However, this quest for publishing 

novel findings as the ultimate aim should translate the insights from structural and 

functional imaging experiments into the valid and practically relevant clinical applications. 

This requires the consolidation of a heterogeneous literature to distil robust findings and 

common patterns. Thus, the clinical implications of data integration provide clinicians with 

a better understanding of the complex brain disorders’ pathophysiology, and improve 

differential diagnosis (e.g., comparing data of individual patients to aggregate highest 
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evidence-based data). It allows also the monitoring of short- and long-term treatment 

planning and plastic change that would only be feasible via using longitudinal cohorts with 

sufficiently long follow-ups. Additionally, it will provide consensus evidence on 

heterogeneous topics with potential medico-legal implications. Thus, there is a clear need 

to identify the consistent functional and anatomical patterns across prior findings, 

differentiate spurious from replicable results, and quantitatively consolidate effects in a 

particular neurological or psychiatric disorder.  

There is a plethora of methods available for summarizing previous findings 

(Borenstein, et al., 2009), such as qualitative systematic-, narrative-, or strategic reviews, 

as well as quantitative or qualitative meta-analyses. Systematic reviews usually collect 

weight and qualitatively summarize the available evidence on a condition based on the 

predefined eligibility criteria and a comprehensive search strategy. Meta-analyses, in turn, 

are a heterogeneous set of statistical approaches that start from the same premise but 

have the goal of quantitative integration of the results of previous studies. Both of them 

are profound tools to provide summary of the existing, presumably noisy literature. The 

clinical utility of systematic reviews and meta-analyses are manifold (Moher, et al., 2009; 

Uman, 2011). They can be used as: A) educational tools providing a starting point for 

students, researchers and clinicians striving to become familiar with a new topic, B) 

consensus-building methods to arrive at consolidated knowledge with a new clinical 

challenge, C) initiating to develop the clinical practice guidelines  (e.g., for either treatment 

planning and follow-up, or for diagnostic purpose), D) ways to shed light on a gap in the 

literature, E) a reference point for comparing future individual studies, and F) priors for 

future more targeted analyses, alleviating the curse of dimensionality that is ever-so-

prevalent in neuroimaging (Fiest, et al., 2014; Foroutan, et al., 2018; Gopalakrishnan and 

Ganeshkumar, 2013; Sheehan and Lam, 2015).  

Reviews and meta-analyses can thus both by themselves and in combination 

provide critical advances in the field by consolidating the current evidence and suggesting 

new hypotheses (Sepehry, et al., 2016). That being said, the value of either, critically 

depends on their search strategy, approach for compiling and filtering data, statistical and 

interlectual rigidity for the synthesis, and the clarity of reporting. For example, to ensure 

the quality of the reviews, the “Enhancing the Quality and Transparency Of health 

Research” network (EQUATOR) (www.equator-network.org) reporting guideline suggests 

to use a set of Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
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(PRIMSA), when reporting search strategy and filtering based on in-/exclusion criteria  

(Moher, et al., 2009).  

Despite the undisputed importance of meta-analyses in neuroimaging and the 

large number of such studies on virtually all neurological and psychiatric disorders, there 

are limited resources for standards and practical guidelines for meta-abnalyses. In 

particular, while technical apsects of performing neuroimaging meta-analyses were 

recently discussed (Müller et al., 2018), a similar standardization of clinical meta-analyses, 

arguably a key area of future applications, is critically lagging. This shortcoming is 

reflected in the large heterogeneity of neuroimaging meta-analyses aiming to consolidate 

the literature on neurobiological underpinnings of neuropsychiatric disorders, which shows 

little consistency. Therefore, we provided a glance on the qualititaive and quantitavie 

methods to integrate the divergent results and suggest best-practice recomandations for 

clinical neuroimaging meta-analyses. Importantly, we focus on the conceptual and 

practical implications/considerations, particularly for reserarchers entering the field, while 

refering the readers to previous overviews for more technical details.  

In line with this educational focus, we set the stage by outlining and discussing the 

differences between reviews and meta-analyses, as well as between classical appraoches 

to clinical or behavioral meta-analyses on the one hand and neuroimaging meta-analyses 

on the other. Subsequently, we will provide an overview and practical recommendations 

for search strategies, data collection, and dealing with multiple experiments on the same 

cohorts (a common phenomenon in the clinical-neuroimaging literature) before briefly 

commenting on data analysis methods. Overall, this work should complement more 

statistically oriented overviews with practical guideline for clinicians to improve 

transparency of search strategy, data organization, validity of analysis, and quality of 

reports in neuroimaging meta-analysis.  

 

  

2. Reviews vs. meta-analyses 

The various methodologies for integrating previous researches may be aligned on a 

continuum, based on the trade-off between flexibility (and often inclusivity) on one hand 

and the statistical rigor and objective inference on the other (Figure 1). Of note, it has been 

argued that the position along this interchange directly relates to the quality of the 

supporting evidence (Esteves, et al., 2017; Kataoka, 2015; Yang, et al., 2010), and that 
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quantitative analyses provide the most important information. This interplay informs of the 

conflicting aspects of the methodology that needs acknowledgement (Guyatt, et al., 2008). 

 

--------Please Insert Figure 1 About Here-------- 

 

Narrative reviews represent one end of this continuum, in which, the author(s), 

usually experts in the respective field summarize and comment on the relevant literature, 

often against the backdrop of their own expertise. These reports tend to summarize a 

limited number of previous findings that are commonly selected to support a particular 

argument, develop new hypotheses and with initiating an overview, e.g., as a part of a 

book chapter. A major strength of this format is the fact that it can identify emerging trends 

or find discrepancies that would get lost in a broader systematic integration of the entire 

literature. Likewise, narrative reviews could provide a high-level overview (eagle-eye) on 

large or complex fields. These advantages, however, come with the downside of a rather 

subjective weighting and limited considerations on the actual (numerical) evidence 

supported by individual reports (Hammersley, 2004). Narrative reviews are still frequently 

found in clinical medicine, given the rich tradition that practitioners draw conclusions from 

their own experience, providing “expert opinions” through blending published findings and 

personal experience, aside from having novice medical students to provide a narrative 

review for their thesis. Here the interpretation of the evidence thus depends on the skills 

of the reviewer to find a holistic picture of the field and place it vis-à-vis practical 

experience, an approach which may yield a picture that reflects the particular interests 

and sensibilities of the reviewer (Eisenhart, 1998; Schwandt, 1998). Importantly, such 

reviews are neither intended to be exhaustive, nor do they make use of statistical 

analyses, as both would be incompatible with the idea of highlighting a particular topic 

based on expertise and one’s own reading of the literature.  

Systematic reviews, while representing an umbrella term, could be considered the 

next step in the aforementioned continuum, and are frequently used as the basis for 

evidence-based policy-making and clinical practice (Cooper, 1998; Light and Pillemer, 

1984; Slavin, 1986). These types of reviews use explicit procedures and a priori specified 

methods to identify, appraise, and synthesize the entire available evidence, including the 

assessment of the file-drawer effect (systematic bias in the published vs. unpublished 

literature). Systematic reviews are seen as the canons of quantitative methodology, which 
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can be done without any statistical analysis) (Hammersley, 2001). Put differently, the 

advantage of systematic reviews is that evidence is appraised without missing content 

since it is systematically examined. However, there is no quantitative approach to evaluate 

strength or limitation of the cumulative evidence. Thus, quantitative meta-analyses may 

be considered as a subtype of systematic reviews where the reported effects can be and 

hence are statistically integrated (Haidich, 2010). That is, systematic reviews may denote 

both the larger class of any non-subjective integration of the literature or those endeavors 

within this broader class that do not employ quantitative methods for statistical inference 

on the convergence of previous work. Currently, two distinct research collaborations are 

examining and overviewing systematic reviews and meta-analysis (Sepehry, 2006). The 

Cochrane collaboration which was established in 1992 for health care system (Egger and 

Smith, 1997; Geddes, et al., 1998), and the International Campbell Collaboration 

(https://www.campbellcollaboration.org) which was established in 2000 for social, 

behavioral, and educational arena. Additionally, in order to record and maintain 

information permanently, and allow data sharing and open science, an international 

prospective register of systematic reviews PROSPERO 

(https://www.crd.york.ac.uk/prospero/) was developed by the National Institute for Health 

Research (NIH) for reviewing protocols in health related outcomes, social care, welfare, 

education, or international development.   

Meta-analysis, known as a summarizing enterprise (Rosenthal, 1984), first was 

defined within the social science literature by Gene V. Glass as "The statistical analysis of 

a large collection of analysis results from individual studies for the purpose of integrating 

the findings"(Glass, 1976). It has several subtypes, including the most widely known 

quantitative type but also several semi-quantitative or even qualitative versions (also 

referred to as qualitative meta-synthesis, or meta-review, qualitative meta-data-analysis, 

or meta-ethnography) (Sandelowski, 2004; Timulak, 2009; Zimmer, 2006). Like 

quantitative meta-analyses, the qualitative meta-analysis aggregate available findings to 

provide a comprehensive description of a phenomenon across studies but their aims, and 

methodological considerations are different, they do not always calculate an effect-size 

(measure of the magnitude of a phenomenon) (Levitt, 2018).  

One commonality between the review and meta-analysis methods is to 

systematically assess and summarize the results of previously published research, 

collected via search of the literature, verifying for file-drawer’s data, or the use of 

https://www.campbellcollaboration.org/
https://www.crd.york.ac.uk/prospero/)
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computerized search engines and retrieve data to derive conclusions about that body of 

research. There is the individual patient data meta-analysis (alias, data pooling, or mega-

analysis), that according to the Cochrane, “rather than extracting summary (aggregate) 

data from published studies or within consortia, the original research data at the individual 

case level are sought directly from the researchers responsible for each study. These data 

are pooled then re-analysed centrally and combined, if appropriate, in meta-analyses” 

(Higgins, et al., 2008), that is not without experimenter’s bias since experimenters can 

select whom to collect data from and that there is no guideline or controlling bodies for 

studies to submit protocol a priori. Thus, for standard meta-analysis, several standard 

statistical metrics (effect sizes) were developed to quantify the strength of a phenomenon, 

such as the Cohens’s d, Glass’s delta, Hedges’s g, Hunter-Schmidt’s approach, and many 

more depending on the type of data (dichotomized, rank-ordered, ratio, or continuous type 

data) (Kelley and Preacher, 2012). For example, Cohens’s d, Glass’s delta, and Hedges’s 

g can be used with descriptive data such as mean and standard deviation along sample 

size (continuous data type) in each group/or arm of study/clinical trial, whereas, odd ratio, 

hazard ratio, or relative risk ratio can be used on dichotomized data type 

(presence/absence of an event in a sample A versus sample B). However, given that 

meta-analyses and systematic reviews could mix ‘oranges and apples’ due to the 

heterogeneity of the included studies and their publication biases, quality control is an 

important step to perform methodologically sound meta-analyses (Esteves, et al., 2017; 

Ioannidis, 2016). To address some conceptual and practical advances in the systematic 

reviews field, several diagnostic/quality assessment tools are developed (e.g., Newcastle-

Ottawa Scale, Jadad scale), and PRISMA (http://www.prisma-statement.org) guideline 

(Moher, et al., 2009), Committee on Best Practices in Data Analysis and Sharing 

(COBIDAS) (Nichols et al., 2016) and Quality Of Reporting of Meta-analyses (QUOROM) 

(Moher, et al., 1999). Such guidelines are set to allow transparency, consistency in 

methodology, and to obtain high quality data.  

Quantitative meta-analysis (Haidich, 2010), is commonly considered to require a 

formal, epidemiological study design for the systematic appraisal of the results of previous 

published and unpublished research in order to arrive at statistically validated conclusions 

from this body of research. A typical feature of quantitative meta-analyses in clinical 

settings is to restrict the analysis to primary studies providing themselves high evidence, 

usually randomized controlled trials (RCTs), though in other fields, e.g., neuroimaging has 

http://www.prisma-statement.org)/
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become common to include all evidence that is currently available to account for the 

heterogeneity of the literature and the absence of a clear hierarchy of evidence. This last, 

has its limitation, which is not being able to account for study quality in the analysis. 

Identifying sources of variation (inconsistency, heterogeneity) in a larger literature through 

meta-analysis is another important aspect that can provide inference on the effects, e.g., 

of experimental design (Fletcher, 2007). In addition, examining the sources and 

quantifying the extent of heterogeneity within and between included studies allows 

controlling for the effect of moderating factors in order to arrive at optimal generalizability 

of findings. In order to determine the presence and extent of heterogeneity, various 

approaches are implemented, including quantitative (I2, Cochran’s Q-statistics, τ2) 

(Higgins, et al., 2003) and graphical representations (e.g., Forest plot, Funnel plot). 

Statistical approaches (e.g., univariate and multivariate meta-regression) may then be 

applied to examine the impact of moderating factors on the effect-size estimates and 

adjust the latter. For these types of meta-analyses, various specific softwares are available, 

including the Comprehensive Meta-Analysis (CMA) (Borenstein M, et al., 2005) funded by 

the National Institute of Health (NIH). This type of meta-analysis is often utilized for 

knowledge synthesis and transfer to help policymaking but also represent the foundation 

of future targeted studies.  

Noteworthy that those quantitative meta-analyses, when correctly performed, 

provide the most robust outcome, since they provide statistically testable evidence for 

convergence of the current literature. Yet, given that it is limited to those primary studies 

that convey all information in the format necessary for statistical aggregation, there is a 

danger of losing out relevant but less conventional aspects of the literature. Consequently, 

systematic or even narrative reviews may represent important complements as long as 

the respective strengths and limitations are clearly communicated. As a more 

comprehensive description of the advantages, limitations and potential of different 

approaches in the general field of clinical research is beyond the scope of this work, we 

would like to refer the reader to more specialized literature (Sepehry, et al., 2016) and 

focus next on meta-analyses of neuroimaging findings. Since, the fundamentally 

qualitative nature of the underlying signals, to date, has focused on localization of effects 

rather than the quantification of their strengths; we start by noting that this is an evolving 

field, as standard concepts used in quantitative meta-analyses are emergent of various 
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fields, are not readily applicable to the high-dimensional mass-univariate regime of 

neuroimaging. 

 

3. Types of neuroimaging meta-analyses’ approach 

To identify regional brain abnormality in neuropsychiatric disorders, structural and 

functional neuroimaging studies use local changes in cerebral blood flow, glucose or 

oxygen metabolism during neuropsychological task performance or through a task-free 

“resting-state” condition. In clinical neuroimaging studies, statistical analysis is usually 

performed between patients and healthy individuals or patients across two conditions 

(e.g., before and after a clinical trial/intervention) or patients with various subtypes. Unlike 

classical effect-size meta-analyses of behavioural and clinical sciences, neuroimaging 

meta-analysis does not focus on the presence/absence or strength of an effect at any 

given location. Rather, identifies the spatial convergence across available data.  

Nowadays, the quantitative pooled analysis across individual publications (i.e. 

meta-analysis) or the pooled analysis of raw data or multi-site studies (mega-analysis) are 

available to increase power and reliability of previous findings (Costafreda, 2009). In 

particular, some centers share the raw images to perform mega-analysis e.g., via 

PsyMRI, which is a multicenter resting-state fMRI data focusing on major depressive 

disorder and neurodegenerative diseases (http://www.psymri.org/) (Major Depressive 

Disorder Working Group of the Psychiatric, et al., 2013). Besides, some research groups 

have performed third level analyses as pioneered by Enhencing Neuro Imaging Genetics 

Through Meta-Analysis, ENIGMA consortium approach (Thompson, et al., 2017). 

Furthermore, sharing full statistical brain maps is another approach to conduct image-

based meta-analysis, which combines whole-brain statistic volumes of results by applying 

different statistical procedures including fixed and mixed activation maps (Salimi-Khorshidi, 

et al., 2009). The other approach for neuroimaging meta-analysis is coordinate-based 

meta-analysis (CBMA) using peak/local maxima coordinates of the observed difference 

between groups (Eickhoff, et al., 2009; Tahmasian M, 2018). Of note, individual 

neuroimaging studies report the location of peak coordinates, reflecting identified 

significant regions (e.g., grey matter volume or functional differences between two groups) 

in 3D anatomical spaces (x,y,z). In CMBA, coordinates of group comparisons from each 

experiment are extracted from publications and then analyzed. It has been argued that 

image-based meta-analysis (IBMA) is superior to CBMA method, as it uses less spatial 

information from each study (Salimi-Khorshidi, et al., 2009). Although, the IBMA is a 

http://www.psymri.org/
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powerful technique to integrate neuroimaging studies, obtaining the original images of 

publications’ results is difficult. In contrast, coordinates are reported almost universally 

and can be extracted from published papers. Put differently, getting raw images requires 

that it has been deposited online or the authors share it privately, meaning that active 

participation/collaboration of the authors is required. Conversely, CBMA works “passively” 

and investigators could extract data through the entire literature and perform meta-

analysis to identify the potential spatial convergence in a research question (Eickhoff, et 

al., 2012; Tahmasian M, 2018).  

In CBMA on a neuropsychiatric disorder, all the included neuroimaging studies 

report their results in a standard anatomical space to assess the convergent regional 

abnormality across all subjects that have different brain size and shape. The two 

commonly used anatomical spaces for spatial normalization and reporting of coordinates 

of group comparisons include Talairach space (Talairach and Tournoux, 1988) and 

Montreal Neurological Institute (MNI) space (A.C. Evans, 1993). Of note, the brain size in 

MNI space is larger than Talairach space (Lancaster, et al., 2007). Hence, all results from 

various experiments should be converted into the same space before conducting a 

neuroimaging meta-analysis (Brett, et al., 2001). In most cases, in order to reduce 

MNI/Talairach coordinate disparity, the reported Talairach coordinates will be transformed 

into MNI coordinates for analysis (Lancaster, et al., 2007). Accordingly, standard 

anatomical space that was used for normalization of each included study should be 

carefully identified. Such information is often found in the method or results sections, or in 

the legends of figures/tables of original publications. Usually, Statistical Parametric 

Mapping (SPM), Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software 

Library (FSL), and Freesurfer softwares report their results in the MNI space, while 

Analysis of Functional Neuroimaging (AFNI) and Brainvoyager use Talairach. However, 

to retrieve the applied space in each study, meta-analytic investigators should refer to the 

original published manuscript, or contact the authors for clarification.  

Noteworthy that in neuroimaging meta-analysis terminology, “study” refers to an 

individual scientific publication and “experiment” reflects a single analysis or contrast of 

interest in a given study yielding localization information (i.e. patients > controls; patients 

< controls). CBMA is currently a widely employed approach to find consistent brain 

abnormalities in neurological diseases and psychiatric disorders (Figure 2), which 

underlines the recent noticeable attention to this method by the researchers.  
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--------Please Insert Figure 2 About Here-------- 

 

There are various algorithms for conducting CBMA. These include 1) activation 

likelihood estimation (ALE), which assess the convergence of foci reported from available 

experiments by modelling the (unknown) true location with Gaussian probability 

distributions to account for spatial uncertainty associated with the coordinates (Eickhoff, 

et al., 2012; Eickhoff, et al., 2009; Turkeltaub, et al., 2002), compute the union thereof 

across experiments and perform statistical testing against a null-distribution reflecting 

random spatial association; 2) kernel density analysis (KDA), in which the smoothing 

kernel is a spherical indicator with a particular radius around the peak coordinate, 

reflecting the number of peaks within that radius (Wager, et al., 2007); 3) Gaussian-

process regression (GPR) approach that assess the unobserved statistic image given that 

the sparse peak activation allows estimation of effect size at each voxel (Salimi-Khorshidi, 

et al., 2011); 4) parametric voxel-based meta-analysis (PVM), in which the value of 

individual voxel in the summary map represents the proportion of studies reporting an 

activation within a specified local neighbourhood (Costafreda, et al., 2009); 5) signed 

differential mapping (SDM) that reconstructs positive and negative maps in the same 

image and focuses on between-study heterogeneity (Radua and Mataix-Cols, 2012); and 

6) Bayesian log-Gaussian Cox that process regression and uses fully Bayesian random‐

effects meta-regression model based on log-Gaussian Cox processes (Samartsidis P., 

2018). Comparing advantages and limitations of the mentioned CBMA approaches is 

beyond the scope of this paper.  

To secure the validity of CBMA results, we suggest the practical recommendations 

on defining research question(s), in-/exclusion criteria, extracting information from 

literatures, data organization, statistical analysis, and reporting the results. Moreover, we 

provided a flow diagram to conduct a methodologically sound CBMA by visualizing it’s 

basic steps (Figure 3). In addition, we underscore some important conceptual aspects for 

clinicians and researchers in the field of neuroimaging meta-analysis. 

 

--------Please Insert Figure 3 About Here-------- 
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4. How to translate and develop an idea to conduct the meta-analysis? 

Through aforementioned reasons, identifying the convergent regional abnormality in 

neuropsychiatric disorders via neuroimaging meta-analysis is a worthwhile tactic to shed 

light on pathophysiology of disorders. This aim could be achieved in different ways, 

leading potentially divergent results among CBMA studies. Hence, it is logical to 

operationalize a research question before starting a CBMA. Following that, one should 

consider to clarify particular in-/exclusion criteria, method of data collection, and analysis 

(see section 5). 

 

4.1. How to define a novel question? 

Sometimes, clinicians or researchers want to find convergent brain abnormality to 

understand neural correlates of a particular disorder, but the available neuroimaging 

studies point to divergent findings. Here, there is a clear need to identify a consistent 

pattern across previous studies using neuroimaging meta-analysis. However, novelty of 

the research question should be carefully checked and pre-registered, as several 

neuroimaging meta-analyses already exist in many fields. For instance, if there is a 

previous meta-analysis focusing on VBM studies, there is a need to find regions with 

functional disturbances. In case cognitive action control is of interest, researchers could 

include all studies that applied various tasks (e.g., Stop-signal, Go/No-Go, Stroop, Flanker 

task) or restrict the analysis to only one paradigm (e.g., Go/No-Go task). Similarly, if 

previous works concentrate on task studied for a specific cognitive domain (e.g., working 

memory), finding consistent regions related to other domains additionally might be 

interesting. Although, researchers are interested to identify consistent regional differences 

between patients and healthy individuals, in the presence of sufficient number of studies, 

focusing on comparing subtypes of particular disorder or the effects of specific intervention 

is also possible. For example, it can be possible to include all behavioral tasks in 

depression to focus on the various cognitive and emotional processes necessary in all 

paradigm types. Moreover, performing sub-analyses gives the opportunity to focus on 

more detailed processes of different cognitive or emotional tasks (e.g., positive or negative 

emotional processing). Accordingly, defining a general question representative of the 

entire neuroimaging literature, or a specific question reflecting a particular imaging 

modality or cognitive domain, are critical steps in CBMA. However, further interpretation 
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of the results is highly dependent on the selection criteria and the included experiments. 

Taken together, we suggest a priori specifying the research question/design of meta-

analysis as precisely as possible. 

 

4.2. Which type of imaging modalities could be included? 

Theoretically, any study that has applied whole brain voxel-wise analysis could be included 

in the CBMA. However, this depends on the main research question (i.e. structural or 

functional alterations or both) pertaining to the neuropsychiatric disorder. For example, 

including studies using VBM method, which investigates volume differences in cortical or 

subcortical brain structures, might be a good choice to assess the structural abnormality 

across the entire brain. Thus, conducting a meta-analysis on VBM studies allows 

assessment of the consistent brain atrophy in a specific neuropsychiatric disorder or across 

various mental disorders (Goodkind, et al., 2015). Task-based functional studies (i.e. fMRI 

or PET) measure the changes in blood-oxygen-level dependent (BOLD) or glucose 

metabolism in PET imaging through cognitive or emotional tasks. Hence, performing a 

meta-analysis on such studies warrants identification of convergent brain regions 

associated with a particular cognitive/behavioral domain. On the other hand, resting-state 

fMRI (rs-fMRI) method is associated with the intrinsic neuronal activity of the brain, while 

research participants are not performing any external neurocognitive task. Meta-analysis 

on rs-fMRI studies can be used to detect the consistent brain regions related to intrinsic 

functional disturbances across published rs-fMRI studies. Combination of structural and 

functional studies elucidates converging findings and facilitate finding of important brain 

regions as highlighted via different neuroimaging modalities. In general, CBMA provides 

insight to identify the consistent brain regions in neuropsychiatric disorders by assessing 

spatial convergence of reported peaks across various imaging modalities or focusing on a 

specific modality based on the research question. Noteworthy that, for particular 

neuropsychiatric cases, data might be unavailable for all imaging modalities (e.g., PET in 

children or during pregnancy).  

 

4.3. Power of meta-analysis: 

Meta-analyses usually face a trade-off between number of included experiments and their 

heterogeneity. It has been recommended that the included studies for analysis should be 
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homogeneous. However, including a larger number of studies increases the power to 

detect smaller effects and increases robustness for the generalization across experimental 

and analytical procedures (Tahmasian M, 2018). It has been proposed that including at 

least 17–20 experiments in ALE meta-analyses is necessary to have sufficient power 

(80%) to gauge the valid results and to avoid spurious effects driven by a single study 

(Eickhoff, et al., 2016). However, this may not be always possible due to scarcity of 

evidence, and one need to note that this is an important criterion when planning and 

performing a replicable CBMA. As mentioned earlier, based on the research question, one 

might include different tasks, various rs-fMRI methods, or combination of structural and 

functional studies. In some cases, conducting analysis on different modalities might be 

reasonable, but not for each of them separately, due to low number of experiments on that 

specific condition. Beside the power issue, as the aim of CBMA is to find convergence 

points across the entire literature, performing meta-analysis on very few studies might be 

counter intuitive. 

 

4.4. Pre-registration: 

In order to avoid duplication, increasing transparency and quality, and to reduce reporting 

bias, pre-registration of meta-analysis protocol has been suggested. For projects with a 

health related outcome, key information about the design of systematic reviews or meta-

analyses should be registered in PROSPERO (https://www.crd.york.ac.uk/prospero/). 

 

5. Method of performing CBMA 

Hitherto, we described the concepts and differences between meta-analysis and reviews, 

presented the available approaches to conduct a neuroimaging meta-analysis, and 

discussed how one could develop an idea for a meta-analysis. Herein, we suggest 

practical recommendations to perform CBMA as the prevailing approach of neuroimaging 

meta-analyses, although many of these recommendations are also relevant for image-

based meta-analyses. An overview of the workflow for a CBMA is available in Figure 3. 

The following sections provide detailed information of the CBMA workflow steps. 

5.1. Search strategy and screening the abstracts 

Validity of meta-analytic results primarily depends on accuracy of included data. Thus, 

using a standard strategy for literature search and extracting the data is an important initial 

https://www.crd.york.ac.uk/prospero/)


 16 

step in CBMA. The following recommendations help to extract and organize the required 

data correctly. Importantly, the search strategy has to be clearly reported in any CBMA i.e. 

searched databases, date of search, applied keywords, number of studies emerged 

through each database searching or other sources (e.g., mentioned in available reviews), 

number of the in-/excluded abstracts and full-texts, and the reasons for excluding the 

papers should be mentioned in the PRISMA flow diagram. For more information read: 

(Moher, et al., 2009). 

Following the standard strategy to determine a suitable literature, the first important 

practical point is to identify the appropriate keywords, which are representing the main 

aim, and ensuring that the search will be highly sensitive without compromising accuracy. 

Furthermore, in order to have a more comprehensive result for entering synonyms, one 

could use Medical Subject Headings (MeSH) in PubMed or subject headings (Emtree) for 

EMBASE. For example, if the main question is to find the convergent functional brain 

abnormality in a neuropsychiatric disorder, the potential studies for CBMA can be 

identified  through combining different keywords (e.g., “Attention-deficit/hyperactivity 

disorder” or ADHD), imaging modality (e.g., “fMRI” or “PET”), and populations (e.g., 

“human”),. Peculiar cognitive/emotion domain (e.g. “emotion regulation”) can be added to 

the keywords, based on the research question. 

The second point is to perform the systematic search via multiple search engines 

supporting different databases e.g., PubMed/Medline, Scopus, Web of Science, 

NeuroSynth, BrainMap, and EMBASE, and complement with Google Scholar search to 

identify all available literature. Furthermore, reference tracking of identified publications or 

relevant published review/meta-analysis could be very useful to locate publications that 

were missed from the original search. Consequently, after removing duplicated items 

emerging from multiple database searching and reference tracking, theoretically one 

should have all the relevant publications. Searching in various databases is fairly sensitive 

and could cover all the relevant literature. However, due to the low specificity of searches 

using particular keywords, researchers have to manually assess whether the identified 

publications are matched (i.e. in terms of concept and methodology) based on the 

research question. The eligibility assessment of the identified literature starts first by 

screening the abstracts for in-/exclusion criteria. For instance, case reports, letter to 

editors, meta-analyses, reviews, animal studies, and original studies dealing with 

irrelevant topics to the research question, or using different clinical population/study 
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design, which are not matched with the main question, should be excluded. Many 

researchers prefer to exclude non-English language studies as well.  

If at least two appraisers independently evaluate the abstracts and full texts, the 

chance of potential mistakes will be minimized. Here, we suggest that the appraisers code 

the abstracts for selection independently (i.e., exclude or keep the abstract). It means that 

if the abstract meets at least one of the exclusion criteria, it should be coded as “exclude”, 

otherwise it should be coded as “keep”. If coding of abstracts is “keep”, their full-texts must 

be evaluated for eligibility later. We recommend recording the numbers of “excluded” 

abstracts and the reasons for exclusion, which are needed for filling out the PRISMA flow 

diagram. In case the two appraisers rate a specific study differently, a third rater should 

decide for in-/exclusion of that study and the reason of rejection, and concordance rate 

among raters could be reported. To avoid potential mistakes in data collection, particularly 

the manual data extraction, all details should be double-checked by all raters. 

  

5.2. Eligibility of the identified publications at full-text reviews 

The eligibility of each study to be included, which ones are coded as “keep” in the previous 

step, has to be checked. Thus, researchers have to screen/read the full text of all those 

abstracts, and decide whether they could be finally included based on the research 

question. The following recommendations are useful to identify suitable publications. 

- Studies without reporting the standard anatomical space coordinates (Talairach or 

MNI) should be excluded, as the coordinates are the input of meta-analysis and 

we should compare the findings based on the standard space (e.g., MNI). If 

coordinates are not reported on the contrast of interest in the main text or 

supplementary material, one should/could contact the authors to obtain such data.  

- If the aim is to identify the difference between patients and healthy subjects, 

longitudinal and interventional studies (before and after comparisons) could be 

included only if they report a significant results between the groups at baseline. In 

this case, researchers can only include the coordinates from the baseline 

experiment. Similarly, in the test-retest validation studies, including coordinates of 

the baseline experiment between groups is a viable strategy.  

- In the studies performing more than one scan on the same subjects in different 

conditions (e.g., on-medication/off-medication or different medication status (drug-
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naïve/medicated/remitted), we recommend to only include the condition as 

homogenous as possible across studies, according to the research question 

because it has been shown that a particular condition such as medication status 

can influence the CBMA results (Herz, et al., 2014; Tahmasian, et al., 2017).  

- According to the research question, one should decide which particular subjects 

(children or adults) or specific sub-type of disorder (melancholic or atypical 

depression) or stage of patients’ condition (acute or chronic) to be included. 

- Studies with small sample size (e.g., less than seven individuals in the smaller 

group) should be excluded, because the results might be spurious and rarely 

replicable. 

- A null-hypothesis in CBMA is random spatial associations across the whole brain 

with the assumption that each voxel has the same chance of being activated 

(Eickhoff, et al., 2009; Turkeltaub, et al., 2002). Thus, studies that did not perform 

whole brain analysis cannot be included in order to avoid selection bias (i.e., region 

of interest (ROI)) and inflating the results regarding the particular brain regions. In 

particular, studies that applied ROI-based analyses or small-volume correction 

have to be excluded. It is an important criterion, as the null distribution in CBMA 

reflects a random spatial association between findings across the whole brain. The 

assumption that each voxel has a priori the same chance for being reported will be 

violated by ROI analyses or small-volume corrections (SVC) Go<baseline, 

Go>baseline.  

- Based on the above-mentioned reason, seed-based functional connectivity 

analysis in rs-fMRI, diffusion-tensor imaging (DTI) and spectroscopy studies 

should be excluded from CBMA, as they usually focus on particular areas in the 

brain.  

- Studies with “hidden ROI analyses” should be excluded: this refers to the studies 

that do not cover the whole brain during scanning. This factor can be checked in 

the methods, as the total brain space size is about 14x17x10 cm3 without the 

cerebellum (Carter, 2014). Of note, masking analysis to a particular area or 

conjunction has been applied in some studies to report the results.  

- In case the included studies have used patients with other neuropsychiatric or 

medical comorbidities, this should be reported to deliver a clear message about 

the included data.  
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- One should be cautious to choose and extract the coordinates based on the main 

aim. For example, in task based studies, there is variety of experiments e.g.  

Go<No-Go, Go>No-Go, Go<baseline, Go>baseline, No-Go<baseline, No-

Go>baseline in healthy subjects and patients and comparisons between controls 

and patients. In case two groups of patients are compared to the same control 

group, one should include the experiments following their research question. 

Hence, careful including of the experiments-of-interest is necessary in any CBMA. 

 

5.3. Data extracting and organization 

After defining the included publications, the necessary data has to be extracted and 

organized. As previously mentioned, “experiment” reflects on a single analysis or contrast 

of interest in a given paper comparing the structural or functional measurements between 

patients and healthy controls. Each single experiment provides at least one or a set of 3D 

stereotactic coordinates (x, y, z), reflecting group comparison in a certain condition. To 

extract and organize the data from the included experiments and other meta-data from all 

eligible studies, researchers should extract mandatory required data (i.e. x, y, z 

coordinates) and meta-data (i.e. sample size of each group, which is necessary for ALE 

analysis and the MNI or Talairach space for conversion). Also, Z-statistics, t-statistics, or 

uncorrected p-values from the eligible experiments are needed for GPR and effect size-

SDM methods, but other meta-analysis methods treat all foci equally (Radua, et al., 2012; 

Salimi-Khorshidi, et al., 2011). The mandatory information (i.e. coordinates and meta-

data) is necessary for performing meta-analysis. Other optional data could be extracted 

from each included study i.e. bibliography, type of imaging modality, diagnosis criteria of 

patients, neuropsychological assessments, and applied behavioral task or rs-fMRI 

methods. This might be helpful to perform separate sub-analyses on a particular imaging 

modality or a specific task, if number of experiments in each condition is at least 17–20 

experiments. For more information see (section 4.3). This method would be helpful to 

show an overview table of included studies presenting important information for readers 

e.g., bibliography, sample size, participant’s characteristics, imaging modality, behavioral 

tasks, applied stimuli in task studies, original analyzing method and used 

preprocessing/analysis software, and anatomical space.  

In any CBMA, collection and organization of the dataset should be precisely 

defined and transparent. One of the important issues in data organization is handling 
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multiple experiments from the same sample of subjects that could be published in one or 

several papers. The reason is that the same groups of individuals with multiple 

experiments do not represent independent observations in the dataset and therefore has 

a considerable impact on the results compared to groups with only one experiment 

(Turkeltaub, et al., 2012), as it oversample a particular cohort (i.e., include a same sample 

more than once), giving it additional (undue) influence on the overall result. Thus, 

researchers need to report how they organize and analyze the multiple experiments from 

the same sample. Ideally, for each sample, it would be recommended to include only one 

experiment to prevent such influence. However, in the literature, there are publications 

with several reported experiments using multiple modalities or tasks. For instance, both 

increased (patients > controls) and decreased contrasts (patients < controls) in grey 

matter volume or activation/deactivation due to particular task were reported in one or few 

publications. In contrast, some meta-analyses include only one experiment from the same 

sample of subjects, which reflects the best process of CBMA, based on the research 

question.  Hence, there is no standard approach to deal with such experiments (Cieslik, 

et al., 2015; Tahmasian, et al., 2017; Tahmasian, et al., 2016). Turkeltaub and colleagues 

recently suggested a pooling approach, meaning that if several papers were published 

based on the same group of subjects and reported several experiments, one should 

combine them to minimize within group effects (Turkeltaub, et al., 2012). Therefore, in 

case there are two or more studies which are performed on the same patient sample and 

multiple experiments are reported based on different modalities (e.g., VBM and a task-

fMRI), different tasks, or different analysis methods (e.g., regional homogeneity (ReHo) 

and amplitude of low frequency fluctuations (ALFF) methods in rs-fMRI), it has been 

suggested to only include one of those experiments or merge all experiments together. 

Usually, one can identify the same sample by looking at the method section (e.g., 

demographic table of subjects) and list of authors of the original publications. In case of 

uncertainty, the authors of original studies can be contacted to ascertain uniqueness of 

the sample. 

 

5.4. Performing analysis, reporting and interpretation of the results 

 

There are various methods to conduct CBMA by applying different algorithms by in-house 

scripts or use of various available softwares (e.g., GingerALE http://brainmap.org/ale/). In 
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any case, the inputted data is x,y,z coordinates of the included experiments and the results 

of CBMA will be cluster(s) showing the significant convergent regional abnormality in a 

particular neuropsychiatric disorder. Differences between the methods mainly pertain to 

the actual model used for assessing convergence. As mentioned in section 3, the technical 

details of each algorithm are beyond the scope of this guideline. 

Like individual neuroimaging studies, in CBMA, there is a clear need to correct for 

multiple comparisons, as uncorrected thresholding can yield a higher sensitivity, but 

obviously provide more false positives. Various multiple comparison correction methods 

are available in neuroimaging meta-analysis, but one should consider a balance between 

sensitivity and susceptibility to false positives (Muller, et al., 2018). There are two main 

options for multiple comparisons in neuroimaging meta-analyses i.e. the family-wise error 

(FWE) or the false discovery rate (FDR), on the voxel- or cluster-level. It has been shown 

that voxel-wise FDR correction is not an optimal method and increases the chance of 

reporting the spurious clusters (Chumbley and Friston, 2009; Eickhoff, et al., 2016). In 

CBMA, cluster-level FWE correction has been recommended as the standard and most 

stringent approach to avoid false positive results. Importantly, on the voxel-level a cluster 

forming threshold of p < 0.001 and a cluster-level threshold of p < 0.05 is suggested 

(Eickhoff, et al., 2016). In general, correction for multiple comparisons is essential for 

reporting reliable meta-analysis results.  

Of note, CBMA demonstrates “spatial convergence” of structural and functional 

brain findings across experiments in a particular condition, but does not deliver any 

information regarding strength of decrease/increase of activation or gray matter alterations 

(Eickhoff, et al., 2012). For example, if researchers found consistent functional abnormality 

in the amygdala in depression using emotional tasks (e.g., including patients < controls 

experiments), they should not interpret this finding as decrease in activity of amygdala in 

depression, rather lower activation for emotional tasks is consistently reported in the 

amygdala than the other brain regions across the included experiments. Unfortunately, 

results of image-based meta-analyses and effect size-SDM still discourse about 

activation/deactivation of particular brain areas. 

Importantly, the contribution of the individual studies to a significant convergent 

cluster and the clear anatomical properties of the identified cluster (x,y,z location in 

MNI/Talairach), number of voxels, p-value, name of the region based on the canonical 

atlases e.g., Harvard-oxford atlas (http://neuro.imm.dtu.dk/wiki/Harvard-Oxford_Atlas), 
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Anatomy toolbox (http://www.fz-juelich.de/inm/inm 

1/EN/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html), JuBrain 

(https://jubrain.fz-juelich.de)) should be clearly reported. It is also important to discuss the 

role of the identified cluster (e.g., when the consistent cluster in the particular part of 

amygdala) explicitly in pathophysiology of neuropsychiatric disorder, rather than 

discussing the whole region and over interpreting the results. 

 

6. Summary 

Meta-analysis, unlike qualitative and scoping reviews, uses a statistical approach to 

combine the results from multiple studies to gain a consistent effect of interest. The results 

of individual neuroimaging studies are in particular quite heterogeneous due to various 

experimental designs and statistical inference procedures. CBMA and image-based meta-

analysis are powerful tools to achieve a synoptic view across various neuroimaging 

findings in a quantitative fashion. CBMA is the most widely used meta-analysis method to 

identify consistent structural and/or functional brain abnormality between patients with 

particular neuropsychiatric disorder in contrast to healthy individuals.  

The present practical recommendations highlight the important steps in conducting 

a valid neuroimaging meta-analysis in neurological and psychiatric disorders. In order to 

translate a clear message regarding the convergent neuroimaging findings in a particular 

disorder, we suggest that the research question and analyses should be planned in 

advance, pre-registered and not modified later to find significant findings, in order to 

minimize experimenter’s bias. Also search strategy, selection criteria, number of included 

experiments, data extraction and organization approach, applied statistical methods, and 

multiple comparison thresholds, should be transparently reported for readers throughout 

the main text, supplementary materials and a table of included studies/experiments. Many 

researchers extract data manually, which leads to flexibility in search strategy and errors 

in extraction of coordinate, anatomical space, or type of imaging modality/task extraction. 

To avoid potential mistakes in data collection, we recommend that details should be 

double-checked by independent raters. These suggestions could be considered when 

publishing both CBMA and image-based meta-analyses to provide a clear message 

regarding the convergent brain abnormalities in particular neuropsychiatric disorders. We 

hope that the present algorithm help to remedy this heterogeneity across individual 

neuroimaging studies in a sound approach. These recommendations allow replication of 
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CBMA results by independent researchers, which become very important in neuroimaging 

recently. 
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Figures:  

 

Figure 1. This shows evidence synthesis on a continuum based on the extent of statistical 

data analysis and applications. 
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Figure 2. A) Number of published neuroimaging meta-analysis based on all applied 

methods in PubMed; B) Number of published neuroimaging meta-analysis per year in 

PubMed. ALE: activation likelihood estimation, KDR: kernel density analysis, GPR: 

Gaussian-process regression PVM: parametric voxel-based meta-analysis, SDM: signed 

differential mapping. 
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Figure 3. Flow-chart illustrating the main steps of performing a meta-analysis. 
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