000864421 001__ 864421
000864421 005__ 20240610120313.0
000864421 0247_ $$2doi$$a10.1039/C9SM00541B
000864421 0247_ $$2ISSN$$a1744-683X
000864421 0247_ $$2ISSN$$a1744-6848
000864421 0247_ $$2altmetric$$aaltmetric:63588929
000864421 0247_ $$2pmid$$apmid:31334524
000864421 0247_ $$2WOS$$aWOS:000477986500017
000864421 0247_ $$2Handle$$a2128/24173
000864421 037__ $$aFZJ-2019-04205
000864421 082__ $$a530
000864421 1001_ $$0P:(DE-Juel1)172801$$aSimsek, Ahmet Nihat$$b0
000864421 245__ $$aSubstrate-rigidity dependent migration of an idealized twitching bacterium
000864421 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2019
000864421 3367_ $$2DRIVER$$aarticle
000864421 3367_ $$2DataCite$$aOutput Types/Journal article
000864421 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582038556_521
000864421 3367_ $$2BibTeX$$aARTICLE
000864421 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864421 3367_ $$00$$2EndNote$$aJournal Article
000864421 520__ $$aMechanical properties of the extracellular matrix are important determinants of cellular migration in diverse processes, such as immune response, wound healing, and cancer metastasis. Moreover, recent studies indicate that even bacterial surface colonization can depend on the mechanics of the substrate. Here, we focus on physical mechanisms that can give rise to substrate-rigidity dependent migration. We study a “twitcher”, a cell driven by extension–retraction cycles, to idealize bacteria and perhaps eukaryotic cells that employ a slip-stick mode of motion. The twitcher is asymmetric and always pulls itself forward at its front. Analytical calculations show that the migration speed of a twitcher depends non-linearly on substrate rigidity. For soft substrates, deformations do not lead to build-up of significant force and the migration speed is therefore determined by stochastic adhesion unbinding. For rigid substrates, forced adhesion rupture determines the migration speed. Depending on the force-sensitivity of front and rear adhesions, forced bond rupture implies an increase or a decrease of the migration speed. A requirement for the occurrence of rigidity-dependent stick-slip migration is a “sticky” substrate, with binding rates being an order of magnitude larger than unbinding rates in absence of force. Computer simulations show that small stall forces of the driving machinery lead to a reduced movement on high rigidities, regardless of force-sensitivities of bonds. The simulations also confirm the occurrence of rigidity-dependent migration speed in a generic model for slip-stick migration of cells on a sticky substrate.
000864421 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000864421 588__ $$aDataset connected to CrossRef
000864421 7001_ $$0P:(DE-Juel1)174470$$aBräutigam, Andrea$$b1
000864421 7001_ $$0P:(DE-HGF)0$$aKoch, Matthias D.$$b2
000864421 7001_ $$0P:(DE-HGF)0$$aShaevitz, Joshua W.$$b3
000864421 7001_ $$0P:(DE-Juel1)171956$$aHuang, Yunfei$$b4
000864421 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b5
000864421 7001_ $$0P:(DE-Juel1)171489$$aSabass, Benedikt$$b6$$eCorresponding author
000864421 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C9SM00541B$$gVol. 15, no. 30, p. 6224 - 6236$$n30$$p6224 - 6236$$tSoft matter$$v15$$x1744-6848$$y2019
000864421 8564_ $$uhttps://juser.fz-juelich.de/record/864421/files/c9sm00541b.pdf$$yRestricted
000864421 8564_ $$uhttps://juser.fz-juelich.de/record/864421/files/581348v1.full.pdf$$yOpenAccess
000864421 8564_ $$uhttps://juser.fz-juelich.de/record/864421/files/c9sm00541b.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864421 8564_ $$uhttps://juser.fz-juelich.de/record/864421/files/581348v1.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864421 909CO $$ooai:juser.fz-juelich.de:864421$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172801$$aForschungszentrum Jülich$$b0$$kFZJ
000864421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174470$$aForschungszentrum Jülich$$b1$$kFZJ
000864421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171956$$aForschungszentrum Jülich$$b4$$kFZJ
000864421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b5$$kFZJ
000864421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171489$$aForschungszentrum Jülich$$b6$$kFZJ
000864421 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000864421 9141_ $$y2019
000864421 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864421 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864421 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2017
000864421 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864421 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864421 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864421 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864421 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000864421 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864421 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864421 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864421 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864421 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864421 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000864421 9801_ $$aFullTexts
000864421 980__ $$ajournal
000864421 980__ $$aVDB
000864421 980__ $$aI:(DE-Juel1)ICS-2-20110106
000864421 980__ $$aUNRESTRICTED
000864421 981__ $$aI:(DE-Juel1)IBI-5-20200312
000864421 981__ $$aI:(DE-Juel1)IAS-2-20090406