000864447 001__ 864447
000864447 005__ 20240610120315.0
000864447 0247_ $$2doi$$a10.1063/1.5112033
000864447 0247_ $$2Handle$$a2128/22590
000864447 0247_ $$2pmid$$apmid:31372194
000864447 0247_ $$2WOS$$aWOS:000483884200014
000864447 0247_ $$2altmetric$$aaltmetric:65111921
000864447 037__ $$aFZJ-2019-04231
000864447 082__ $$a530
000864447 1001_ $$0P:(DE-Juel1)172729$$aChien, Wei$$b0
000864447 245__ $$aDeformation and dynamics of erythrocytes govern their traversal through microfluidic devices with a deterministic lateral displacement architecture
000864447 260__ $$aMelville, NY$$bAIP$$c2019
000864447 3367_ $$2DRIVER$$aarticle
000864447 3367_ $$2DataCite$$aOutput Types/Journal article
000864447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599652722_20794
000864447 3367_ $$2BibTeX$$aARTICLE
000864447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864447 3367_ $$00$$2EndNote$$aJournal Article
000864447 520__ $$aDeterministic lateral displacement (DLD) microfluidic devices promise versatile and precise processing of biological samples. However, this prospect has been realized so far only for rigid spherical particles and remains limited for biological cells due to the complexity of cell dynamics and deformation in microfluidic flow. We employ mesoscopic hydrodynamics simulations of red blood cells (RBCs) in DLD devices with circular posts to better understand the interplay between cell behavior in complex microfluidic flow and sorting capabilities of such devices. We construct a mode diagram of RBC behavior (e.g., displacement, zig-zagging, and intermediate modes) and identify several regimes of RBC dynamics (e.g., tumbling, tank-treading, and trilobe motion). Furthermore, we link the complex interaction dynamics of RBCs with the post to their effective cell size and discuss relevant physical mechanisms governing the dynamic cell states. In conclusion, sorting of RBCs in DLD devices based on their shear elasticity is, in general, possible but requires fine-tuning of flow conditions to targeted mechanical properties of the RBCs
000864447 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000864447 536__ $$0G:(DE-Juel1)jics21_20181101$$aBlood flow in microvascular networks (jics21_20181101)$$cjics21_20181101$$fBlood flow in microvascular networks$$x1
000864447 588__ $$aDataset connected to CrossRef
000864447 7001_ $$0P:(DE-Juel1)166080$$aZhang, Zunmin$$b1
000864447 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000864447 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b3$$eCorresponding author
000864447 773__ $$0PERI:(DE-600)2265444-6$$a10.1063/1.5112033$$gVol. 13, no. 4, p. 044106 -$$n4$$p044106$$tBiomicrofluidics$$v13$$x1932-1058$$y2019
000864447 8564_ $$uhttps://juser.fz-juelich.de/record/864447/files/1.5112033.pdf$$yPublished on 2019-07-26. Available in OpenAccess from 2020-07-26.
000864447 8564_ $$uhttps://juser.fz-juelich.de/record/864447/files/1.5112033.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-07-26. Available in OpenAccess from 2020-07-26.
000864447 909CO $$ooai:juser.fz-juelich.de:864447$$pVDB$$popen_access$$popenaire$$pdnbdelivery$$pdriver
000864447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172729$$aForschungszentrum Jülich$$b0$$kFZJ
000864447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000864447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b3$$kFZJ
000864447 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000864447 9141_ $$y2019
000864447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864447 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000864447 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864447 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMICROFLUIDICS : 2017
000864447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864447 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864447 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864447 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864447 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864447 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864447 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864447 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864447 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864447 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864447 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000864447 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000864447 9801_ $$aFullTexts
000864447 980__ $$ajournal
000864447 980__ $$aVDB
000864447 980__ $$aI:(DE-Juel1)ICS-2-20110106
000864447 980__ $$aI:(DE-82)080012_20140620
000864447 980__ $$aUNRESTRICTED
000864447 981__ $$aI:(DE-Juel1)IBI-5-20200312
000864447 981__ $$aI:(DE-Juel1)IAS-2-20090406