000864468 001__ 864468 000864468 005__ 20240625095114.0 000864468 0247_ $$2doi$$a10.1111/bph.14689 000864468 0247_ $$2ISSN$$a0007-1188 000864468 0247_ $$2ISSN$$a0366-0826 000864468 0247_ $$2ISSN$$a1476-5381 000864468 0247_ $$2ISSN$$a2056-8177 000864468 0247_ $$2Handle$$a2128/22868 000864468 0247_ $$2altmetric$$aaltmetric:59865974 000864468 0247_ $$2pmid$$apmid:30981211 000864468 0247_ $$2WOS$$aWOS:000474034600001 000864468 037__ $$aFZJ-2019-04249 000864468 082__ $$a610 000864468 1001_ $$0P:(DE-HGF)0$$aMaleeva, Galyna$$b0 000864468 245__ $$aA photoswitchable GABA receptor channel blocker 000864468 260__ $$aMalden, MA$$bWiley$$c2019 000864468 3367_ $$2DRIVER$$aarticle 000864468 3367_ $$2DataCite$$aOutput Types/Journal article 000864468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568870693_27324 000864468 3367_ $$2BibTeX$$aARTICLE 000864468 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000864468 3367_ $$00$$2EndNote$$aJournal Article 000864468 520__ $$aBackground and PurposeAnion‐selective Cys‐loop receptors (GABA and glycine receptors) provide the main inhibitory drive in the CNS. Both types of receptor operate via chloride‐selective ion channels, though with different kinetics, pharmacological profiles, and localization. Disequilibrium in their function leads to a variety of disorders, which are often treated with allosteric modulators. The few available GABA and glycine receptor channel blockers effectively suppress inhibitory currents in neurons, but their systemic administration is highly toxic. With the aim of developing an efficient light‐controllable modulator of GABA receptors, we constructed azobenzene‐nitrazepam (Azo‐NZ1), which is composed of a nitrazepam moiety merged to an azobenzene photoisomerizable group.Experimental ApproachThe experiments were carried out on cultured cells expressing Cys‐loop receptors of known subunit composition and in brain slices using patch‐clamp. Site‐directed mutagenesis and molecular modelling approaches were applied to evaluate the mechanism of action of Azo‐NZ1.Key ResultsAt visible light, being in trans‐configuration, Azo‐NZ1 blocked heteromeric α1/β2/γ2 GABAA receptors, ρ2 GABAA (GABAC), and α2 glycine receptors, whereas switching the compound into cis‐state by UV illumination restored the activity. Azo‐NZ1 successfully photomodulated GABAergic currents recorded from dentate gyrus neurons. We demonstrated that in trans‐configuration, Azo‐NZ1 blocks the Cl‐selective ion pore of GABA receptors interacting mainly with the 2′ level of the TM2 region.Conclusions and ImplicationsAzo‐NZ1 is a soluble light‐driven Cl‐channel blocker, which allows photo‐modulation of the activity induced by anion‐selective Cys‐loop receptors. Azo‐NZ1 is able to control GABAergic postsynaptic currents and provides new opportunities to study inhibitory neurotransmission using patterned illumination. 000864468 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0 000864468 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1 000864468 588__ $$aDataset connected to CrossRef 000864468 7001_ $$0P:(DE-HGF)0$$aWutz, Daniel$$b1 000864468 7001_ $$0P:(DE-HGF)0$$aRustler, Karin$$b2 000864468 7001_ $$0P:(DE-HGF)0$$aNin‐Hill, Alba$$b3 000864468 7001_ $$0P:(DE-HGF)0$$aPetukhova, Elena$$b4 000864468 7001_ $$0P:(DE-HGF)0$$aBautista‐Barrufet, Antoni$$b5 000864468 7001_ $$0P:(DE-HGF)0$$aGomila‐Juaneda, Alexandre$$b6 000864468 7001_ $$0P:(DE-HGF)0$$aScholze, Petra$$b7 000864468 7001_ $$0P:(DE-HGF)0$$aPeiretti, Franck$$b8 000864468 7001_ $$0P:(DE-HGF)0$$aRovira, Carme$$b9 000864468 7001_ $$0P:(DE-HGF)0$$aKönig, Burkhard$$b10 000864468 7001_ $$0P:(DE-HGF)0$$aGorostiza, Pau$$b11$$eCorresponding author 000864468 7001_ $$00000-0003-2699-7825$$aBregestovski, Piotr$$b12$$eCorresponding author 000864468 7001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b13$$eCorresponding author$$ufzj 000864468 773__ $$0PERI:(DE-600)2029728-2$$a10.1111/bph.14689$$gp. bph.14689$$n15$$p2661-2677$$tBritish journal of pharmacology$$v176$$x1476-5381$$y2019 000864468 8564_ $$uhttps://juser.fz-juelich.de/record/864468/files/Maleeva_et_al-2019-British_Journal_of_Pharmacology.pdf$$yOpenAccess 000864468 8564_ $$uhttps://juser.fz-juelich.de/record/864468/files/Maleeva_et_al-2019-British_Journal_of_Pharmacology.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000864468 909CO $$ooai:juser.fz-juelich.de:864468$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000864468 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-HGF)0$$aAix-Marseille Université$$b0$$kAMU 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Regensburg$$b1 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Regensburg$$b2 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Barcelona$$b3 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Kazan State Medical University$$b4 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Bioengineering of Catalonia (IBEC)$$b5 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Bioengineering of Catalonia (IBEC)$$b6 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Medical University Viena$$b7 000864468 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-HGF)0$$aAix-Marseille Université$$b8$$kAMU 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Barcelona$$b9 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Regensburg$$b10 000864468 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Bioengineering of Catalonia (IBEC)$$b11 000864468 9101_ $$0I:(DE-588b)1043886400$$60000-0003-2699-7825$$aAix-Marseille Université$$b12$$kAMU 000864468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b13$$kFZJ 000864468 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0 000864468 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1 000864468 9141_ $$y2019 000864468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000864468 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000864468 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000864468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRIT J PHARMACOL : 2017 000864468 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 000864468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000864468 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000864468 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000864468 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000864468 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000864468 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRIT J PHARMACOL : 2017 000864468 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000864468 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000864468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000864468 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000864468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000864468 920__ $$lyes 000864468 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0 000864468 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1 000864468 980__ $$ajournal 000864468 980__ $$aVDB 000864468 980__ $$aUNRESTRICTED 000864468 980__ $$aI:(DE-Juel1)IAS-5-20120330 000864468 980__ $$aI:(DE-Juel1)INM-9-20140121 000864468 9801_ $$aFullTexts