001     864468
005     20240625095114.0
024 7 _ |a 10.1111/bph.14689
|2 doi
024 7 _ |a 0007-1188
|2 ISSN
024 7 _ |a 0366-0826
|2 ISSN
024 7 _ |a 1476-5381
|2 ISSN
024 7 _ |a 2056-8177
|2 ISSN
024 7 _ |a 2128/22868
|2 Handle
024 7 _ |a altmetric:59865974
|2 altmetric
024 7 _ |a pmid:30981211
|2 pmid
024 7 _ |a WOS:000474034600001
|2 WOS
037 _ _ |a FZJ-2019-04249
082 _ _ |a 610
100 1 _ |a Maleeva, Galyna
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A photoswitchable GABA receptor channel blocker
260 _ _ |a Malden, MA
|c 2019
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568870693_27324
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background and PurposeAnion‐selective Cys‐loop receptors (GABA and glycine receptors) provide the main inhibitory drive in the CNS. Both types of receptor operate via chloride‐selective ion channels, though with different kinetics, pharmacological profiles, and localization. Disequilibrium in their function leads to a variety of disorders, which are often treated with allosteric modulators. The few available GABA and glycine receptor channel blockers effectively suppress inhibitory currents in neurons, but their systemic administration is highly toxic. With the aim of developing an efficient light‐controllable modulator of GABA receptors, we constructed azobenzene‐nitrazepam (Azo‐NZ1), which is composed of a nitrazepam moiety merged to an azobenzene photoisomerizable group.Experimental ApproachThe experiments were carried out on cultured cells expressing Cys‐loop receptors of known subunit composition and in brain slices using patch‐clamp. Site‐directed mutagenesis and molecular modelling approaches were applied to evaluate the mechanism of action of Azo‐NZ1.Key ResultsAt visible light, being in trans‐configuration, Azo‐NZ1 blocked heteromeric α1/β2/γ2 GABAA receptors, ρ2 GABAA (GABAC), and α2 glycine receptors, whereas switching the compound into cis‐state by UV illumination restored the activity. Azo‐NZ1 successfully photomodulated GABAergic currents recorded from dentate gyrus neurons. We demonstrated that in trans‐configuration, Azo‐NZ1 blocks the Cl‐selective ion pore of GABA receptors interacting mainly with the 2′ level of the TM2 region.Conclusions and ImplicationsAzo‐NZ1 is a soluble light‐driven Cl‐channel blocker, which allows photo‐modulation of the activity induced by anion‐selective Cys‐loop receptors. Azo‐NZ1 is able to control GABAergic postsynaptic currents and provides new opportunities to study inhibitory neurotransmission using patterned illumination.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wutz, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rustler, Karin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nin‐Hill, Alba
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Petukhova, Elena
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bautista‐Barrufet, Antoni
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gomila‐Juaneda, Alexandre
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Scholze, Petra
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Peiretti, Franck
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rovira, Carme
|0 P:(DE-HGF)0
|b 9
700 1 _ |a König, Burkhard
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gorostiza, Pau
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Bregestovski, Piotr
|0 0000-0003-2699-7825
|b 12
|e Corresponding author
700 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 13
|e Corresponding author
|u fzj
773 _ _ |a 10.1111/bph.14689
|g p. bph.14689
|0 PERI:(DE-600)2029728-2
|n 15
|p 2661-2677
|t British journal of pharmacology
|v 176
|y 2019
|x 1476-5381
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864468/files/Maleeva_et_al-2019-British_Journal_of_Pharmacology.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864468/files/Maleeva_et_al-2019-British_Journal_of_Pharmacology.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864468
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 0
|6 P:(DE-HGF)0
910 1 _ |a University of Regensburg
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a University of Regensburg
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a University of Barcelona
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Kazan State Medical University
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Institute for Bioengineering of Catalonia (IBEC)
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Institute for Bioengineering of Catalonia (IBEC)
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Medical University Viena
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 8
|6 P:(DE-HGF)0
910 1 _ |a University of Barcelona
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a University of Regensburg
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Institute for Bioengineering of Catalonia (IBEC)
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 12
|6 0000-0003-2699-7825
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)169976
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRIT J PHARMACOL : 2017
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRIT J PHARMACOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21