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ABSTRACT: The palm oil industry produces large amounts of empty fruit bunches (EFB) as waste. EFB are very recalcitrant
toward further processing, although their valorization could create novel incentives and bio-economic opportunities for the
industries involved. Herein, EFB have been successfully subjected to the OrganoCat pretreatment—using 2,5-furandicarboxylic
acid as the biogenic catalyst—to fractionate and separate this lignocellulosic material into its main components in a single step.
The pretreatment of EFB leads to the deacetylation and depolymerization of noncellulosic polysaccharides and to the partial
delignification of the cellulosic fiber. The OrganoCat processing of EFB yielded 45 + 0.5 wt % cellulose-enriched pulp, 20 + 0.7
wt % extracted lignin, 3.8 + 0.2 wt % furfural, and 11 + 0.6 wt % hydrolyzed sugars. The obtained EFB-pulp showed high
accessibility to cellulases, resulting in a glucan conversion of 73 + 2% after 72 h (1S + 2% after 1 h) with commercial cellulase
cocktail (Accellerase 1500). Overall, the results suggest that the treatment of the EFB material using OrganoCat may create

promising paths for the full valorization of EFBs.

1. INTRODUCTION

Palm oil has become an important raw material for the
production of food additives, for other nonedible bio-based
materials like detergents, lubricants, and so forth, also for
biofuels. The bioreﬁnin§ of palm oil, extraction, and upgrading,
is thus well-established. ™ However, the sustainability and life-
cycle assessment of the palm oil industry has been often
challenged because of the replacement of rain forests and other
high biodiversity areas by large palm tree plantations.”> On the
other hand, the palm oil production facilities—plantations and
biorefining—represent an important source for employment,
(bio)economy, and assets for many (sub)tropical areas. A
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compromise between development, ecosystem preservation,
and bioeconomy thus appears necessary. Recent studies have
assessed the actual available land for the sustainable develop-
ment of palm plantation for oil production by appraising
several parameters such as climate, soil quality (or lack of),
topography of the area (“ease” of cultivation), and accessibility
of the land for logistics (e.g., penalizing “remote areas” because
of higher costs).” On that basis, sustainability criteria have
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been set, concluding that up to 17% of the total potential
arable land (for palm trees) can be sustainably harvested for
palm oil production, accounting for 233 MHa worldwide.*
While several areas would still have “sustainable room” for
further extension of the plantations, other regions have already
exceeded their potentially available sustainable land for palm
trees. Hence, for such regions, no further palm plantations
should be established in line with sustainability, bioeconomy,
or biorefineries.”

By increasing the economic outcomes of the already present
palm tree plantations, sustainability might be more properly
targeted without compromising the elimination of further
biodiversity-rich areas that must be preserved for future
generations. An option is to holistically valorize the by-
products, for example, lignocellulosic residues, that are
generated in a palm oil biorefinery. Thus, once palm kernels
have been harvested for palm oil production, the lignocellulosic
residues—the so-called empty fruit bunches (EFB)—, may be
pretreated to render lignin, hemicellulose, and cellulose,
broadening the benefits for the palm tree biorefinery.' EFB
is usually burned in incinerators of palm oil mills, which
generates energy, but also environmental pollution.6 Multiple
approaches to process EFB have been proposed aiming for
different valorization strategies, for example, fuels,”® fibers,”*°
fermentable sugars,ll_”’ or even nutraceuticals."”'® Moreover,
residual lignin may be valorized as well."®

Depending on the envisaged product, different pretreatment
strate%ies have been assessed for EFB, such as use of
alkali,'*1°71% acid,">'®'” hot water or steam,’ ionic
liquids,”" or direct pyrolysis.'® In this work, the full valorization
of EFB is envisaged by successfully applying the OrganoCat
technologyzz_25 (Figure 1), using the biogenic acid 2,5-
furandicarboxylic acid (FDCA) as the recyclable catalyst.
FDCA is being evaluated as the potential monomer for bio-
based plastic materials and is thus available in large quantities.
In the present context, FDCA offers advantages during its
recovery and reuse, as it is highly thermostable at the
OrganoCat temperature operational range (140—160 °C).”
Furthermore, the combination of a biogenic pretreatment
involving FDCA and 2-methyltetrahydrofuran (MTHF) with
the valorization of EFB may lead to strong synergies, leading
researchers to pursue activities with environmental and
economic benefits.

1,20
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Albeit the current price of FDCA is still high, Dessbesell et
al. have recently described synthetic pathways that may hold
potential to decrease FDCA market prices down to 1.8 US$
kg™, for example, when produced from high-fructose corn
syrup.”® Moreover, the recyclability of FDCA as the catalyst in
OrganoCat has been successfully shown by Weidener et al,
showcasing the quantitative recovery of the acid.”> Thus, upon
optimization, FDCA may become an economically viable
catalyst for pretreatment processes and for other biorefinery-
based conversions.

The OrganoCat concept has shown to be effective at high
biomass loadings—up to 400 g L™'—, and preliminary
economic assessments are promising. tA range of plant
materials have been successfully pretreated by this process,
such as beech wood,”*™>° mate tea, phragmites, rice,”**” or
biomass from energy plants like Sida, Miscanthus, Szarvasi, and
Silphium.”® The obtained lignin and cellulosic fractions are
delivered without major degradation because of mild
processing conditions. The resulting fractions can be used
for further chemical or biotechnological processing to deliver
novel materials with high (bio)economic impact. In this
respect, the application of OrganoCat to EFB holds potential
to enable novel synergies and a higher value generation in palm
oil biorefineries. Moreover, the used solvent (2-MTHF) and
catalyst (FDCA) are potentially biogenic, and thus could be
synthetized in biorefineries directly in-house.

2. RESULTS AND DISCUSSION

Using multiscale analytics including chemical, spectroscopic,
and enzymatic methods, the composition of the original EFB
lignocellulosic material and the composition of the fractions
obtained from OrganoCat were characterized in detail. An
overview of different components measured before and after
the treatment is depicted in Figure 2.

As depicted in Figure 2 (left column), the composition of
EFB raw material accounts for a 31.9 + 0.3 wt % of cellulose,
182 + 0.5 wt % of lignin, and 148 + 12 wt % of
hemicelluloses. Starch and ASR were extracted prior to the
analysis with ethanol, methanol, and chloroform to remove
lipids, pigments and other small molecules, followed by an
enzyme cocktail containing amylase and amylopectinase to
remove specifically starch (9.2 + 0.1 wt % in total). In
addition, EFB also contained 6.0 + 0.3 wt % acetyl groups and
some nondetermined material, which include residual moisture
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Figure 2. Analysis of EFB samples before and after applying the
OrganoCat pretreatment. The material was dried until constant
weight before analysis. Left bars show the initial composition of EFB
raw material; right bars show the composition of fractions obtained;
hydrolyzed hemicelluloses and acetic acid detected in the aqueous
fraction are grouped as “OrganoCat aqueous fraction”; products,
obtained in the 2-MTHF phase are labeled as “OrganoCat-organic
(org.) fraction”; the label “EFB-OrganoCat pulp” shows the
composition in cellulose, hemicellulose, and lignin content. N.d.—
not determined. ASR—alcohol insoluble residue. * Weight loss due to
pretreatment/extraction with EtOH/MeOH/chloroform (removing
alcohol soluble residue, ASR) and enzymatic destarching (removing
starch).

(6.6—12%) and ashes (1.7—3.4%).”°7>" Gratifyingly, the
OrganoCat process enabled the selective depolymerization of
most hemicelluloses resulting in different sugar monomers in
the aqueous fraction (10.8 & 0.6 wt %, Figure 2, right column).
Moreover, the remaining OrganoCat pulp contained mainly
cellulose, 28.5 + 1.0 wt %, with some remaining lignin (4.9 +
0.3 wt %) and entrapped hemicellulose (2.3 + 0.1 wt %). The
organic phase contained mainly lignin (19.5 + 0.7 wt %) with

low amounts of furfural (3.8 + 0.2 wt %) formed during the
dehydration of xylose during the pretreatment. Some of the
compounds found in the ASR-fraction are expected to be
extracted in the OrganoCat organic fraction. Nondetermined
material after the OrganoCat process include residual moisture
and ashes, derived from the raw material. >’

To calculate the acetic acid release, the degree of O-
acetylation in EFB raw material and in the pulp was measured
as well as free acetic acid in the hydrolysate. The degree of
acetylation decreased from 6.0 + 0.3 wt % in the raw material
to 1.1 + 0.2 wt % in the OrganoCat pulp material. This is in
line with the measured acetic acid content in the hydrolysate
(5.2 + 0.1 wt %) and consistent with other works.'' Regarding
xylan, O-acetylation changes from 63 + 2 mol % in the raw
material to 26 + 4 mol % in the OrganoCat pulp. Acetate in
the solid material originates from the hemicellulose xylan,
where it is esterified at the O-2, O-3, and/or O-2,3 position, or
from lignin, which may be y-acetylated.*” Here, the position of
the O-acetyl substituent on xylan was assessed. In the raw
material, acetylation in the 2-position, 3-position, and 2,3-
position was 15 + 2, 40 + 1, and 8 + 1 mol %, respectively,
whereas in the pulp, the numbers were 10 + 1, 12 + 1, and 4 +
2 mol %, respectively. This suggests that O-acetates in the 3-
position on xylan were deacetylated at a higher rate (O-
acetylation reduced by 69%) than in the 2-position (O-
acetylation reduced by 34%) or in the 2,3-position (reduced by
48%). Thus, the OrganoCat pretreatment (with FDCA) leads
to a major reduction in polymer O-acetylation. Based on the
amount of xylan present in the EFB material and the degree of
acetylation of xylan, the majority of acetyl groups released
during the OrganoCat process are derived from xylan, as also
described for angiosperm trees by Lu et al.”” The reduction in
hemicellulose acetylation is known to improve cellulose
hydrolysis, enhancing subsequent valorization steps.”””*

With respect to the hemicellulose fraction, a detailed analysis
of the sugar monomers found in the aqueous phase was
conducted (Figure 3). For comparison, the monosaccharide
composition present in the raw material and in the pulp are
depicted as well.

The most common sugar present in EFB raw material
hemicellulose is xylose (Figure 3, blue bars). Consistent with
the previous literature”*~>° this is mostly due to the presence
of the hemicellulose xylan, which is hydrolyzed by the
OrganoCat process, as can be observed in the OrganoCat
hydrolysate (Figure 3, orange bars). However, the solid
product stream (Figure 3, grey bars)—the cellulose enriched
OrganoCat Pulp—contained some residual hemicellulosic
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Figure 3. Monosaccharide composition of hemicelluloses in the raw material (blue bars), residual hemicelluloses in the cellulose-enriched
OrganoCat pulp (grey bars) and in the aqueous OrganoCat hydrolysate (orange bars) present in wt %. Hemicelluloses of raw material and
OrganoCat Pulp were hydrolyzed into their monosaccharides with trifluoroacetic acid.** In the OrganoCat hydrolysate, the monosaccharides were
detected after removal of the catalyst FDCA.

14453 DOI: 10.1021/acsomega.9b01371
ACS Omega 2019, 4, 14451-14457


http://dx.doi.org/10.1021/acsomega.9b01371

ACS Omega

sugars. Here, a set of OrganoCat parameters was chosen to
avoid degradation of the OrganoCat fractions. A fine-tuning
strategy of the OrganoCat, specifically adapted to the
envisaged application, might improve the solubilization of
hemicelluloses and lignin but might cause higher content in
sugar degradation products such as furfural.”®

Lignin makes up a significant part of EFB raw material. After
the OrganoCat pretreatment, the extracted components were
isolated from the organic phase upon evaporation of 2-MTHEF,
leading to a yield of 18.2 + 0.5 wt % of the initial biomass
weight, containing mostly lignin and presumably some
pigments and lipids (ASR). Based on the data, approx. 73%
of the initial lignin content in the raw material was extracted
from the biomass and recovered in the organic phase as a novel
raw material from EFB. Figure 4 depicts the ratio of lignin
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Figure 4. NMR-analysis of lignin fraction in EFB raw material,
OrganoCat Pulp and OrganoCat Organic Fraction. Amounts of p-
hydroxyphenyl (H-), guaiacyl (G-), syringyl (S-) groups are given per
100 units. The blue bars indicate how many H-, G-, and S-groups are
connected via -O-4 linkage.

monomers—p-hydroxyphenyl group (H), guaiacyl group (G),
and syringyl group (S)—and the relative amount of $-O-4-
linkages. Here, it has been analyzed in detail (Figure 4) to give
a thorough characterization of the changes occurring during
pretreatment.

The H/G/S ratio of the raw material was 3:43:54 (resulting
in a ratio of 1:12.6:16) and the S/G ratio 1.27, which is more
comparable to lignin from grasses such as rye or wheat straw”>
than lignin from beech wood or other sources.”® H-unit
overestimation in the whole material, and the lignin fraction
discussed below, is probably produced because of the presence
of p-hydroxybenzoic acid acylating palm lignin at the gamma
position. In the raw material, 53 + 3 mol % of the monomers
are connected by a f#-O-4-linkage, which only changes slightly
in the OrganoCat pulp after processing (48 + 3 mol %). The
extracted OrganoCat lignin, however, shows a significant
decrease in -O-4-linkages, resulting in 24 + 1 mol % of the S-
G- and H-groups being connected by a p-O-4-linkage. In
addition, the number of H-groups rises from 3.4 + 0.3 mol %
in the raw material to 11.7 & 1.0 mol % in the extracted lignin
suggesting that extracted lignin reacts further during the
OrganoCat treatment. This observed change in H-units might
be caused partially by conversion of S- and G-units to H-units
and also by the liberation of p-hydroxybenzoic acid from

acylated y-hydroxyls of lignin side-chains, as described by Lu et
al.’>* The changes of lignin during the OrganoCat process have
been observed to be time-dependent, and thus, at shorter
reaction times (up to 1 h pretreatment), lignins with a higher
amount of p-O-4-linkages can be obtained, enabling the
generation of different materials depending on the final
application.”” A trade-off in lignin yield and (higher)
proportion of fB-O-4-linkages could be thus reached in line
with the emerging concepts of “Lignin-first” biorefineries.”” >’

With respect to the EFB-pulp, visual differences compared to
the raw material were observed (Figure S). During the

Figure 5. Visual changes along the OrganoCat process. (a) Original
EFB raw material (b) obtained EFB OrganoCat pulp.

OrganoCat process, lignin is not only extracted into the
OrganoCat org. fraction, but some of the remaining lignin also
relocates by absorbing to the OrganoCat pulp surface. Thus,
the partially delignified material appears to be of a darker color
than the untreated raw material as observed also in other
biomasses.”*~>* The processiblity of the EFB-cellulose pulp
was assessed by determining the glucose yield upon enzymatic
digestion. Here, an industrial, commercially available enzyme
mix was used (Accellerase 1500, Figure 6).

The OrganoCat process increases the glucose yield after 72
h (orange dots) 8-fold compared to the original raw EFBs
(blue dots), indicating a superior depolymerization of the
cellulose fibers in the residue. The achieved maximal
conversion rate (~73%) is somewhat lower than values
observed in other studies using pretreated materials (up to
80%).">"” This may be due to the residual lignin still present in
the pulp (Figure 2) or due to the use of cellulase cocktails with
different bias toward polysaccharides (e.g, more or less
effective enzymes). In any case, higher conversion rates may
also be achieved by tailoring OrganoCat process conditions to
further enhance delignification™ as well as by designing new
cellulase variants or enzyme cocktail mixtures with higher
selectivity to EFB raw material properties.

3. CONCLUSIONS

The successful proof-of-concept of the OrganoCat pretreat-
ment applied to EFB has been shown and was characterized in-
depth. The approach enables the production of soluble sugars
(mostly xylose), soluble lignin (e.g, in EtOH, 2-MTHEF,
acetone, DMSO), and a solid cellulose-enriched pulp. Because
of significant delignification and deacetylation, the obtained
pulp is highly accessible to cellulases for its hydrolysis to
glucose as fermentable sugars. Overall, the OrganoCat
pretreatment renders three different fractions of the EFB
lignocellulosic materials with potential valorization in palm tree
biorefineries. Thus, treating the waste material EFB with the
OrganoCat process may contribute to open additional
commercial options of the palm oil industry.
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Figure 6. Enzymatic hydrolysis of EFB raw material (blue dots), OrganoCat pulp obtained from EFB after the OrganoCat process (orange dots).
For comparative purposes, commercial crystalline cellulose (Avicel, grey dots) was used. Glucose yields were calculated based on the cellulose

content of each sample.

4. EXPERIMENTAL PART

4.1. Materials and Methods. All chemicals were
purchased at Sigma-Aldrich, Carl Roth, and CGI. They were
used without further modification. Empty fruit bunches (EFB)
from a palm oil plantation in Sabah (Borneo/Malaysia) were
kindly supplied by Autodisplay Biotech GmbH, Diisseldorf.
The material was dried in an oven at 50 °C until constant
weight (24 h).

4.2. OrganoCat Pretreatment. Reactions were conducted
in triplicates. In a 300 mL Parr high pressure reactor, with glass
inlay 3000 mg EFB and 468 mg (3 mmol) of FDCA were
suspended in 30 mL ultra-pure water and 30 mL 2-MTHEF.
The reactor was closed and heated to 160 °C for 3 h. After
cooling the reactor to room temperature, the reactor was
opened, the liquid phases were separated by decantation and
the aqueous phase was filtered to isolate the cellulose enriched
pulp. The sugar concentrations were determined in the
aqueous phase via IC and HPLC. The solid residue was
washed with distilled water until neutral pH and dried until
constant weight. Lignin was obtained by evaporation of 2-
MTHEF. The amount of residual FDCA and furfural in the
lignin was determined via '"H NMR using mesitylene as the
standard.

4.3. Lignocellulose Analysis. Every analysis was con-
ducted in triplicates. EFB raw material was chopped into slices
of approx. 1 cm and subsequently grinded to fine powder using
a ball mill M 400 (Retsch, Haan, Germany) in a 50 mL metal
beaker (30 s™, 2 min). Alcohol insoluble residues (AIR) were
prepared and destarched as described elsewhere.”* The weight
loss during the procedure including removal of starch was
calculated and is defined as ASR and starch. The remaining
destarched alcohol-insoluble residues (d-AIR) were used for
the subsequent analysis of noncellulosic polysaccharide
composition, crystalline cellulose content, and acetyl bromide
soluble lignin (ABSL) as previously described.”® The acetate
content of d-AIR was determined using an acetic acid kit
(catalog #K-ACETRM, Megazyme, Wicklow, Ireland), follow-
ing an adapted version of the procedure described by Schultink

et al.** AIR material (2 mg) was mixed with 200 yL water and
saponified by addition of 200 4L 1 M NaOH. Samples were
incubated at 25 °C with 600 rpm shaking frequency, followed
by neutralization with 200 #L 1 M HCIl. The material was
pelleted by centrifugation for 10 min at 14 000 rpm and the
total acetic acid content of the supernatant was determined
with the acetic acid kit.

4.4. Analysis of OrganoCat Product Streams. Every
analysis was conducted in triplicates. The obtained aqueous
fraction was cleared from FDCA via precipitation at 5 °C and
subsequently analyzed by high-performance anion-exchange
chromatography with pulsed amperometric detection to
determine the monosaccharide yield, as described elsewhere.”®

4.5. Saccharification Test. Every reaction was conducted
in triplicates. Hydrolysis of raw material, Avicel, and Organo-
Cat pulp obtained from the OrganoCat pretreatment was
carried out in an Eppendorf ThermoMixer Comfort using 1.5
mL Eppendorf vials. For each reaction, 20 mg of pulp and 10
uL Accellerase 1500 (60 FPU mL™ and 82 CBU mL™},
Genencor, the Netherlands) were dissolved in 1 mL of citrate
buffer (pH = 4.5) and shaken at 50 °C for a specific time.
Afterward, samples were heated to 90 °C for 10 min. The
glucose concentration was determined using a glucose (HK)
assay kit obtained from Sigma-Aldrich and a BioTek
PowerWave HT UV-—vis spectrometer. Glucose yields were
calculated based on cellulose content as determined in the
lignocellulose compositional analysis.

4.6. NMR Analysis. Measurements of OrganoCat lignin
were conducted with a Bruker Ascend 400 (400 MHz)
spectrometer. Dried lignin (approx. 100 mg) was dissolved in
DMSO-d,. 'H—"3C-Heteronuclear single quantum coherence
(HSQC) measurements were performed to identify different
linkages present in the lignin. Mesitylene was used as an
internal standard to quantify furfural and S-HMF in the
extracted lignin fraction.

Analysis of EFB raw materials and pulp samples (3 replicates
each):

For the NMR analysis, EFB raw biomass was destarched.
The destarched raw biomass and OrganoCat produced pulp

DOI: 10.1021/acsomega.9b01371
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materials were milled separately using a Retsch PM 100 CM
ball mill, as described previously."' The above ball-milled
material (25 mg) was dissolved in 0.75 mL of deuterated
dimethyl sulfoxide DMSO-dg containing 10 uL of 1-ethyl-3-
methylimidazolium acetate (EMIM(OAC)) and stirred for 2 h
at 60 °C. Two dimensional (2D) 3C—'H HSQC nuclear
magnetic resonance (NMR) spectra were measured on a 600
MHz Bruker NMR spectrometer using the following
parameters. Experimental conditions: pulse program: hsqcetg-
psisp.2, NS: 384, interscan delay: 1 s, TD1: 2048 and TD2:
256 data points, temperature: 25 °C. The chemical shifts were
referred to the solvent DMSO-dg peak (5 2.49 ppm, &¢ 39.5
ppm). The *C—"H cross peaks were identified and quantified
as described.*!
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