Home > Publications database > Atlas-based imaging data analysis tool for quantitative mouse brain histology (AIDAhisto) > print |
001 | 864572 | ||
005 | 20210130002620.0 | ||
024 | 7 | _ | |a 10.1016/j.jneumeth.2019.108394 |2 doi |
024 | 7 | _ | |a 0165-0270 |2 ISSN |
024 | 7 | _ | |a 1872-678X |2 ISSN |
024 | 7 | _ | |a altmetric:64935282 |2 altmetric |
024 | 7 | _ | |a pmid:31415844 |2 pmid |
024 | 7 | _ | |a WOS:000487166600023 |2 WOS |
024 | 7 | _ | |a 2128/23184 |2 Handle |
037 | _ | _ | |a FZJ-2019-04291 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pallast, Niklas |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Atlas-based imaging data analysis tool for quantitative mouse brain histology (AIDAhisto) |
260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1566304402_4807 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Cell counting in neuroscience is a routine method of utmost importance to support descriptive in vivo findings with quantitative data on the cellular level. Although known to be error- and bias-prone, manual cell counting of histological stained brain slices remains the gold standard in the field. While the manual approach is limited to small regions-of-interest in the brain, automated tools are needed to up-scale translational approaches and generate whole mouse brain counts in an atlas framework. Our goal was to develop an algorithm which requires no pre-training such as machine learning algorithms, only minimal user input, and adjustable variables to obtain reliable cell counting results for stitched mouse brain slices registered to a common atlas such as the Allen Mouse Brain atlas. We adapted filter banks to extract the maxima from round-shaped cell nuclei and various cell structures. In a qualitative as well as quantitative comparison to other tools and two expert raters, AIDAhisto provides accurate and fast results for cell nuclei as well as immunohistochemical stainings of various types of cells in the mouse brain. |
536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Wieters, Frederique |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Fink, Gereon R. |0 P:(DE-Juel1)131720 |b 2 |
700 | 1 | _ | |a Aswendt, Markus |0 P:(DE-HGF)0 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.jneumeth.2019.108394 |g p. S0165027019302511 |0 PERI:(DE-600)1500499-5 |p 108394 |t Journal of neuroscience methods |v 326 |y 2019 |x 0165-0270 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/864572/files/Pallast_Post%20Print_2019_J%20Neurosci%20Meth_Atlas-based%20imaging%20data%20analysis%20tool%20for%20quantitative%20mouse%20brain%20histology.pdf |y Published on 2019-08-12. Available in OpenAccess from 2021-02-12. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/864572/files/Pallast_Post%20Print_2019_J%20Neurosci%20Meth_Manual_Atlas-based%20imaging%20data%20analysis.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:864572 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131720 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NEUROSCI METH : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|