001     864572
005     20210130002620.0
024 7 _ |a 10.1016/j.jneumeth.2019.108394
|2 doi
024 7 _ |a 0165-0270
|2 ISSN
024 7 _ |a 1872-678X
|2 ISSN
024 7 _ |a altmetric:64935282
|2 altmetric
024 7 _ |a pmid:31415844
|2 pmid
024 7 _ |a WOS:000487166600023
|2 WOS
024 7 _ |a 2128/23184
|2 Handle
037 _ _ |a FZJ-2019-04291
082 _ _ |a 610
100 1 _ |a Pallast, Niklas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Atlas-based imaging data analysis tool for quantitative mouse brain histology (AIDAhisto)
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1566304402_4807
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cell counting in neuroscience is a routine method of utmost importance to support descriptive in vivo findings with quantitative data on the cellular level. Although known to be error- and bias-prone, manual cell counting of histological stained brain slices remains the gold standard in the field. While the manual approach is limited to small regions-of-interest in the brain, automated tools are needed to up-scale translational approaches and generate whole mouse brain counts in an atlas framework. Our goal was to develop an algorithm which requires no pre-training such as machine learning algorithms, only minimal user input, and adjustable variables to obtain reliable cell counting results for stitched mouse brain slices registered to a common atlas such as the Allen Mouse Brain atlas. We adapted filter banks to extract the maxima from round-shaped cell nuclei and various cell structures. In a qualitative as well as quantitative comparison to other tools and two expert raters, AIDAhisto provides accurate and fast results for cell nuclei as well as immunohistochemical stainings of various types of cells in the mouse brain.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wieters, Frederique
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 2
700 1 _ |a Aswendt, Markus
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.jneumeth.2019.108394
|g p. S0165027019302511
|0 PERI:(DE-600)1500499-5
|p 108394
|t Journal of neuroscience methods
|v 326
|y 2019
|x 0165-0270
856 4 _ |u https://juser.fz-juelich.de/record/864572/files/Pallast_Post%20Print_2019_J%20Neurosci%20Meth_Atlas-based%20imaging%20data%20analysis%20tool%20for%20quantitative%20mouse%20brain%20histology.pdf
|y Published on 2019-08-12. Available in OpenAccess from 2021-02-12.
856 4 _ |u https://juser.fz-juelich.de/record/864572/files/Pallast_Post%20Print_2019_J%20Neurosci%20Meth_Manual_Atlas-based%20imaging%20data%20analysis.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:864572
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131720
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI METH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21