000864579 001__ 864579
000864579 005__ 20220930130217.0
000864579 0247_ $$2doi$$a10.1007/s11548-019-02053-6
000864579 0247_ $$2ISSN$$a1861-6410
000864579 0247_ $$2ISSN$$a1861-6429
000864579 0247_ $$2Handle$$a2128/23368
000864579 0247_ $$2pmid$$apmid:31401715
000864579 0247_ $$2WOS$$aWOS:000496030000007
000864579 037__ $$aFZJ-2019-04297
000864579 041__ $$aEnglish
000864579 082__ $$a610
000864579 1001_ $$0P:(DE-Juel1)167509$$aReuter, Jan André$$b0$$eCorresponding author
000864579 245__ $$aFAConstructor: an interactive tool for geometric modeling of nerve fiber architectures in the brain
000864579 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2019
000864579 3367_ $$2DRIVER$$aarticle
000864579 3367_ $$2DataCite$$aOutput Types/Journal article
000864579 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619074873_1044
000864579 3367_ $$2BibTeX$$aARTICLE
000864579 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864579 3367_ $$00$$2EndNote$$aJournal Article
000864579 520__ $$aPURPOSE: The technique 3D polarized light imaging (3D-PLI) allows to reconstruct nerve fiber orientations of postmortem brains with ultra-high resolution. To better understand the physical principles behind 3D-PLI and improve the accuracy and reliability of the reconstructed fiber orientations, numerical simulations are employed which use synthetic nerve fiber models as input. As the generation of fiber models can be challenging and very time-consuming, we have developed the open source FAConstructor tool which enables a fast and efficient generation of synthetic fiber models for 3D-PLI simulations. METHODS: The program was developed as an interactive tool, allowing the user to define fiber pathways with interpolation methods or parametric functions and providing visual feedback.RESULTS: Performance tests showed that most processes scale almost linearly with the amount of fiber points in FAConstructor. Fiber models consisting of < 1.6 million data points retain a frame rate of more than 30 frames per second, which guarantees a stable and fluent workflow. The applicability of FAConstructor was demonstrated on a well-defined fiber model (Fiber Cup phantom) for two different simulation approaches, reproducing effects known from 3D-PLI measurements.CONCLUSION: We have implemented a user-friendly and efficient tool that enables an interactive and fast generation of synthetic nerve fiber configurations for 3D-PLI simulations. Already existing fiber models can easily be modified, allowing to simulate many different fiber models in a reasonable amount of time.
000864579 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000864579 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000864579 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000864579 536__ $$0G:(DE-Juel1)jjsc43_20181101$$aSimulations for a better Understanding of the Impact of Different Brain Tissue Components on 3D Polarized Light Imaging (jjsc43_20181101)$$cjjsc43_20181101$$fSimulations for a better Understanding of the Impact of Different Brain Tissue Components on 3D Polarized Light Imaging$$x3
000864579 536__ $$0G:(DE-Juel1)jinm11_20181101$$a3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain (jinm11_20181101)$$cjinm11_20181101$$f3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain$$x4
000864579 588__ $$aDataset connected to CrossRef
000864579 7001_ $$0P:(DE-Juel1)169807$$aMatuschke, Felix$$b1
000864579 7001_ $$0P:(DE-Juel1)161196$$aMenzel, Miriam$$b2
000864579 7001_ $$0P:(DE-Juel1)159224$$aSchubert, Nicole$$b3
000864579 7001_ $$00000-0002-8170-9964$$aGinsburger, Kévin$$b4
000864579 7001_ $$00000-0001-7906-8945$$aPoupon, Cyril$$b5
000864579 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b6$$ufzj
000864579 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b7
000864579 773__ $$0PERI:(DE-600)2235881-X$$a10.1007/s11548-019-02053-6$$n11$$p1881-1889$$tInternational journal of computer assisted radiology and surgery$$v14$$x1861-6429$$y2019
000864579 8564_ $$uhttps://juser.fz-juelich.de/record/864579/files/20190819162855636.pdf
000864579 8564_ $$uhttps://juser.fz-juelich.de/record/864579/files/20190819162855636.pdf?subformat=pdfa$$xpdfa
000864579 8564_ $$uhttps://juser.fz-juelich.de/record/864579/files/Reuter2019_Article_FAConstructorAnInteractiveTool-2.pdf$$yOpenAccess
000864579 8564_ $$uhttps://juser.fz-juelich.de/record/864579/files/Reuter2019_Article_FAConstructorAnInteractiveTool-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864579 8767_ $$82936139729$$92019-08-14$$d2019-08-19$$eAPC$$jZahlung erfolgt
000864579 909CO $$ooai:juser.fz-juelich.de:864579$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000864579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167509$$aForschungszentrum Jülich$$b0$$kFZJ
000864579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169807$$aForschungszentrum Jülich$$b1$$kFZJ
000864579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161196$$aForschungszentrum Jülich$$b2$$kFZJ
000864579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159224$$aForschungszentrum Jülich$$b3$$kFZJ
000864579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b6$$kFZJ
000864579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich$$b7$$kFZJ
000864579 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000864579 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000864579 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000864579 9141_ $$y2019
000864579 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864579 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864579 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J COMPUT ASS RAD : 2017
000864579 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864579 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864579 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864579 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864579 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864579 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000864579 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864579 920__ $$lyes
000864579 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000864579 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000864579 980__ $$ajournal
000864579 980__ $$aVDB
000864579 980__ $$aI:(DE-Juel1)INM-1-20090406
000864579 980__ $$aI:(DE-82)080012_20140620
000864579 980__ $$aAPC
000864579 980__ $$aUNRESTRICTED
000864579 9801_ $$aAPC
000864579 9801_ $$aFullTexts