001     864579
005     20220930130217.0
024 7 _ |a 10.1007/s11548-019-02053-6
|2 doi
024 7 _ |a 1861-6410
|2 ISSN
024 7 _ |a 1861-6429
|2 ISSN
024 7 _ |a 2128/23368
|2 Handle
024 7 _ |a pmid:31401715
|2 pmid
024 7 _ |a WOS:000496030000007
|2 WOS
037 _ _ |a FZJ-2019-04297
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Reuter, Jan André
|0 P:(DE-Juel1)167509
|b 0
|e Corresponding author
245 _ _ |a FAConstructor: an interactive tool for geometric modeling of nerve fiber architectures in the brain
260 _ _ |a Heidelberg [u.a.]
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619074873_1044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PURPOSE: The technique 3D polarized light imaging (3D-PLI) allows to reconstruct nerve fiber orientations of postmortem brains with ultra-high resolution. To better understand the physical principles behind 3D-PLI and improve the accuracy and reliability of the reconstructed fiber orientations, numerical simulations are employed which use synthetic nerve fiber models as input. As the generation of fiber models can be challenging and very time-consuming, we have developed the open source FAConstructor tool which enables a fast and efficient generation of synthetic fiber models for 3D-PLI simulations. METHODS: The program was developed as an interactive tool, allowing the user to define fiber pathways with interpolation methods or parametric functions and providing visual feedback.RESULTS: Performance tests showed that most processes scale almost linearly with the amount of fiber points in FAConstructor. Fiber models consisting of < 1.6 million data points retain a frame rate of more than 30 frames per second, which guarantees a stable and fluent workflow. The applicability of FAConstructor was demonstrated on a well-defined fiber model (Fiber Cup phantom) for two different simulation approaches, reproducing effects known from 3D-PLI measurements.CONCLUSION: We have implemented a user-friendly and efficient tool that enables an interactive and fast generation of synthetic nerve fiber configurations for 3D-PLI simulations. Already existing fiber models can easily be modified, allowing to simulate many different fiber models in a reasonable amount of time.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a Simulations for a better Understanding of the Impact of Different Brain Tissue Components on 3D Polarized Light Imaging (jjsc43_20181101)
|0 G:(DE-Juel1)jjsc43_20181101
|c jjsc43_20181101
|f Simulations for a better Understanding of the Impact of Different Brain Tissue Components on 3D Polarized Light Imaging
|x 3
536 _ _ |a 3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain (jinm11_20181101)
|0 G:(DE-Juel1)jinm11_20181101
|c jinm11_20181101
|f 3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain
|x 4
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Matuschke, Felix
|0 P:(DE-Juel1)169807
|b 1
700 1 _ |a Menzel, Miriam
|0 P:(DE-Juel1)161196
|b 2
700 1 _ |a Schubert, Nicole
|0 P:(DE-Juel1)159224
|b 3
700 1 _ |a Ginsburger, Kévin
|0 0000-0002-8170-9964
|b 4
700 1 _ |a Poupon, Cyril
|0 0000-0001-7906-8945
|b 5
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 6
|u fzj
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 7
773 _ _ |a 10.1007/s11548-019-02053-6
|0 PERI:(DE-600)2235881-X
|n 11
|p 1881-1889
|t International journal of computer assisted radiology and surgery
|v 14
|y 2019
|x 1861-6429
856 4 _ |u https://juser.fz-juelich.de/record/864579/files/20190819162855636.pdf
856 4 _ |u https://juser.fz-juelich.de/record/864579/files/20190819162855636.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/864579/files/Reuter2019_Article_FAConstructorAnInteractiveTool-2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/864579/files/Reuter2019_Article_FAConstructorAnInteractiveTool-2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:864579
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169807
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159224
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131632
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J COMPUT ASS RAD : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21