001     864594
005     20240711113859.0
024 7 _ |a 10.3390/atoms7030081
|2 doi
024 7 _ |a 2128/22606
|2 Handle
024 7 _ |a altmetric:65147880
|2 altmetric
024 7 _ |a WOS:000487984900020
|2 WOS
037 _ _ |a FZJ-2019-04305
082 _ _ |a 530
100 1 _ |a Marchuk, Oleksandr
|0 P:(DE-Juel1)5739
|b 0
|e Corresponding author
245 _ _ |a Emission of Fast Hydrogen Atoms in a Low Density Gas Discharge—The Most “Natural” Mirror Laboratory
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1566299238_1326
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, we present a new application for the line shapes of emission induced by reflected hydrogen atoms. Optical properties of the solids in contact with the plasma could be effectively measured at the wavelength of Balmer lines: time-resolved measurements of reflectance and polarization properties of mirrors are performed using the wavelength separation of the direct and reflected signals. One uses the Doppler effect of emission of atoms excited by collisions with noble gases, primarily with Ar or with Kr. In spite of a new application of line shapes, the question of the source of the strong signal in the case of Ar exists: the emission observed in the case of the excitation of H or D atoms by Ar exceeds the signal induced by collisions with Kr atoms by a factor of five, and the only available experimental data for the ground state excitation show practically equal cross-sections for both gases in the energy range of 80–200 eV
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dickheuer, Sven
|0 P:(DE-Juel1)165722
|b 1
700 1 _ |a Ertmer, Stephan
|0 P:(DE-Juel1)169120
|b 2
700 1 _ |a Krasikov, Yuri
|0 P:(DE-Juel1)130068
|b 3
700 1 _ |a Mertens, Philippe
|0 P:(DE-Juel1)4596
|b 4
700 1 _ |a Brandt, Christian
|0 0000-0002-5455-4629
|b 5
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 6
700 1 _ |a Goriaev, Andrei
|0 P:(DE-Juel1)171567
|b 7
700 1 _ |a Ialovega, Mykola
|0 0000-0003-0041-8039
|b 8
700 1 _ |a Göths, Beatrix
|0 P:(DE-Juel1)167536
|b 9
700 1 _ |a Kreter, Arkadi
|0 P:(DE-Juel1)130070
|b 10
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 11
773 _ _ |a 10.3390/atoms7030081
|g Vol. 7, no. 3, p. 81 -
|0 PERI:(DE-600)2704220-0
|n 3
|p 81 -
|t Atoms
|v 7
|y 2019
|x 2218-2004
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864594/files/atoms-07-00081.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864594/files/atoms-07-00081.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864594
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165722
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169120
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)4596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)167536
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21