000864597 001__ 864597
000864597 005__ 20220930130217.0
000864597 0247_ $$2doi$$a10.3390/rs11141691
000864597 0247_ $$2Handle$$a2128/22710
000864597 0247_ $$2altmetric$$aaltmetric:65602376
000864597 0247_ $$2WOS$$aWOS:000480527800061
000864597 037__ $$aFZJ-2019-04307
000864597 082__ $$a620
000864597 1001_ $$00000-0002-8657-3488$$aBandopadhyay, Subhajit$$b0
000864597 245__ $$aHyplant-Derived Sun-Induced Fluorescence—A New Opportunity to Disentangle Complex Vegetation Signals from Diverse Vegetation Types
000864597 260__ $$aBasel$$bMDPI$$c2019
000864597 3367_ $$2DRIVER$$aarticle
000864597 3367_ $$2DataCite$$aOutput Types/Journal article
000864597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568035153_22202
000864597 3367_ $$2BibTeX$$aARTICLE
000864597 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864597 3367_ $$00$$2EndNote$$aJournal Article
000864597 520__ $$aHyperspectral remote sensing (RS) provides unique possibilities to monitor peatland vegetation traits and their temporal dynamics at a fine spatial scale. Peatlands provide a vital contribution to ecosystem services by their massive carbon storage and wide heterogeneity. However, monitoring, understanding, and disentangling the diverse vegetation traits from a heterogeneous landscape using complex RS signal is challenging, due to its wide biodiversity and distinctive plant species composition. In this work, we aim to demonstrate, for the first time, the large heterogeneity of peatland vegetation traits using well-established vegetation indices (VIs) and Sun-Induced Fluorescence (SIF) for describing the spatial heterogeneity of the signals which may correspond to spatial diversity of biochemical and structural traits. SIF originates from the initial reactions in photosystems and is emitted at wavelengths between 650–780 nm, with the first peak at around 687 nm and the second peak around 760 nm. We used the first HyPlant airborne data set recorded over a heterogeneous peatland area and its surrounding ecosystems (i.e., forest, grassland) in Poland. We deployed a comparative analysis of SIF and VIs obtained from differently managed and natural vegetation ecosystems, as well as from diverse small-scale peatland plant communities. Furthermore, spatial relationships between SIF and VIs from large-scale vegetation ecosystems to small-scale peatland plant communities were examined. Apart from signal variations, we observed a positive correlation between SIF and greenness-sensitive VIs, whereas a negative correlation between SIF and a VI sensitive to photosynthesis was observed for large-scale vegetation ecosystems. In general, higher values of SIF were associated with higher biomass of vascular plants (associated with higher Leaf Area Index (LAI)). SIF signals, especially SIF760, were strongly associated with the functional diversity of the peatland vegetation. At the peatland area, higher values of SIF760 were associated with plant communities of high perennials, whereas, lower values of SIF760 indicated peatland patches dominated by Sphagnum. In general, SIF760 reflected the productivity gradient on the fen peatland, from Sphagnum-dominated patches with the lowest SIF and fAPAR values indicating lowest productivity to the Carex-dominated patches with the highest SIF and fAPAR values indicating highest productivity.
000864597 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000864597 588__ $$aDataset connected to CrossRef
000864597 7001_ $$00000-0002-0953-7045$$aRastogi, Anshu$$b1
000864597 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b2
000864597 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b3
000864597 7001_ $$0P:(DE-Juel1)7338$$aSchickling, Anke$$b4
000864597 7001_ $$00000-0002-7192-2032$$aCogliati, Sergio$$b5
000864597 7001_ $$0P:(DE-HGF)0$$aJulitta, Tommaso$$b6
000864597 7001_ $$0P:(DE-HGF)0$$aMac Arthur, Alasdair$$b7
000864597 7001_ $$00000-0002-4283-2484$$aHueni, Andreas$$b8
000864597 7001_ $$0P:(DE-HGF)0$$aTomelleri, Enrico$$b9
000864597 7001_ $$0P:(DE-HGF)0$$aCelesti, Marco$$b10
000864597 7001_ $$0P:(DE-HGF)0$$aBurkart, Andreas$$b11
000864597 7001_ $$00000-0003-0901-9894$$aStróżecki, Marcin$$b12
000864597 7001_ $$0P:(DE-HGF)0$$aSakowska, Karolina$$b13
000864597 7001_ $$0P:(DE-HGF)0$$aGąbka, Maciej$$b14
000864597 7001_ $$0P:(DE-HGF)0$$aRosadziński, Stanisław$$b15
000864597 7001_ $$0P:(DE-HGF)0$$aSojka, Mariusz$$b16
000864597 7001_ $$0P:(DE-HGF)0$$aIordache, Marian-Daniel$$b17
000864597 7001_ $$0P:(DE-HGF)0$$aReusen, Ils$$b18
000864597 7001_ $$0P:(DE-HGF)0$$aVan Der Tol, Christiaan$$b19
000864597 7001_ $$0P:(DE-HGF)0$$aDamm, Alexander$$b20
000864597 7001_ $$0P:(DE-HGF)0$$aSchuettemeyer, Dirk$$b21
000864597 7001_ $$0P:(DE-HGF)0$$aJuszczak, Radosław$$b22$$eCorresponding author
000864597 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs11141691$$gVol. 11, no. 14, p. 1691 -$$n14$$p1691 -$$tRemote sensing$$v11$$x2072-4292$$y2019
000864597 8564_ $$uhttps://juser.fz-juelich.de/record/864597/files/20190820124227980.pdf
000864597 8564_ $$uhttps://juser.fz-juelich.de/record/864597/files/20190820124227980.pdf?subformat=pdfa$$xpdfa
000864597 8564_ $$uhttps://juser.fz-juelich.de/record/864597/files/remotesensing-11-01691-v2.pdf$$yOpenAccess
000864597 8564_ $$uhttps://juser.fz-juelich.de/record/864597/files/remotesensing-11-01691-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864597 8767_ $$8FS0612/07/2019$$92019-07-31$$d2019-08-20$$eAPC$$jZahlung erfolgt$$premotesensing-532277$$zKostenteilung für APC
000864597 909CO $$ooai:juser.fz-juelich.de:864597$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000864597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b2$$kFZJ
000864597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b3$$kFZJ
000864597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7338$$aForschungszentrum Jülich$$b4$$kFZJ
000864597 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000864597 9141_ $$y2019
000864597 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864597 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864597 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864597 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2017
000864597 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864597 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864597 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864597 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864597 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864597 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864597 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864597 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864597 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864597 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864597 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000864597 980__ $$ajournal
000864597 980__ $$aVDB
000864597 980__ $$aUNRESTRICTED
000864597 980__ $$aI:(DE-Juel1)IBG-2-20101118
000864597 980__ $$aAPC
000864597 9801_ $$aAPC
000864597 9801_ $$aFullTexts