001     864598
005     20240711113900.0
024 7 _ |a 10.1016/j.fusengdes.2018.12.092
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a 2128/22607
|2 Handle
024 7 _ |a WOS:000488307400104
|2 WOS
037 _ _ |a FZJ-2019-04308
082 _ _ |a 530
100 1 _ |a Biel, W.
|0 P:(DE-Juel1)129967
|b 0
|e Corresponding author
245 _ _ |a Diagnostics for plasma control – From ITER to DEMO
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1578485535_32588
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The plasma diagnostic and control (D&C) system for a future tokamak demonstration fusion reactor (DEMO) will have to provide reliable operation near technical and physics limits, while its front-end components will be subject to strong adverse effects within the nuclear and high temperature plasma environment. The ongoing developments for the ITER D&C system represent an important starting point for progressing towards DEMO. Requirements for detailed exploration of physics are however pushing the ITER diagnostic design towards using sophisticated methods and aiming for large spatial coverage and high signal intensities, so that many front-end components have to be mounted in forward positions. In many cases this results in a rapid aging of diagnostic components, so that additional measures like protection shutters, plasma based mirror cleaning or modular approaches for frequent maintenance and exchange are being developed.Under the even stronger fluences of plasma particles, neutron/gamma and radiation loads on DEMO, durable and reliable signals for plasma control can only be obtained by selecting diagnostic methods with regard to their robustness, and retracting vulnerable front-end components into protected locations. Based on this approach, an initial DEMO D&C concept is presented, which covers all major control issues by signals to be derived from at least two different diagnostic methods (risk mitigation).
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Albanese, R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ambrosino, R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ariola, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Berkel, M. V.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bolshakova, I.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brunner, K. J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cavazzana, R.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Cecconello, M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Conroy, S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dinklage, A.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Duran, I.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Dux, R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Eade, T.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Entler, S.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Ericsson, G.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Fable, E.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Farina, D.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Figini, L.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Finotti, C.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Franke, Th.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Giacomelli, L.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Giannone, L.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Gonzalez, W.
|0 P:(DE-Juel1)169616
|b 23
|u fzj
700 1 _ |a Hjalmarsson, A.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Hron, M.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Janky, F.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Kallenbach, A.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Kogoj, J.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a König, R.
|0 P:(DE-Juel1)159297
|b 29
|u fzj
700 1 _ |a Kudlacek, O.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Luis, R.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Malaquias, A.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Marchuk, O.
|0 P:(DE-Juel1)5739
|b 33
|u fzj
700 1 _ |a Marchiori, G.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Mattei, M.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Maviglia, F.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a De Masi, G.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Mazon, D.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Meister, H.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Meyer, K.
|0 P:(DE-Juel1)179041
|b 40
|u fzj
700 1 _ |a Micheletti, D.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Nowak, S.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Piron, Ch.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Pironti, A.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Rispoli, N.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Rohde, V.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 47
|u fzj
700 1 _ |a El Shawish, S.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Siccinio, M.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Silva, A.
|0 P:(DE-Juel1)166322
|b 50
700 1 _ |a da Silva, F.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Sozzi, C.
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Tardocchi, M.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Tokar, M.
|0 P:(DE-Juel1)5089
|b 54
|u fzj
700 1 _ |a Treutterer, W.
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Zohm, H.
|0 P:(DE-HGF)0
|b 56
773 _ _ |a 10.1016/j.fusengdes.2018.12.092
|g Vol. 146, p. 465 - 472
|0 PERI:(DE-600)1492280-0
|n Part A
|p 465 - 472
|t Fusion engineering and design
|v 146
|y 2019
|x 0920-3796
856 4 _ |u https://juser.fz-juelich.de/record/864598/files/1-s2.0-S0920379618308585-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/864598/files/1-s2.0-S0920379618308585-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:864598
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129967
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)169616
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 29
|6 P:(DE-Juel1)159297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 33
|6 P:(DE-Juel1)5739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 40
|6 P:(DE-Juel1)179041
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 47
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 54
|6 P:(DE-Juel1)5089
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)PTJ-IKK-20170908
|k PTJ-IKK
|l Innovation für Klimaschutz und Klimawandelanpassung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)PTJ-IKK-20170908
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21