000864624 001__ 864624
000864624 005__ 20240708133028.0
000864624 0247_ $$2doi$$a10.1016/j.jallcom.2019.05.144
000864624 0247_ $$2ISSN$$a0925-8388
000864624 0247_ $$2ISSN$$a1873-4669
000864624 0247_ $$2WOS$$aWOS:000471128700152
000864624 037__ $$aFZJ-2019-04329
000864624 082__ $$a540
000864624 1001_ $$0P:(DE-HGF)0$$aCarvalho, Kele T. G.$$b0
000864624 245__ $$aZnO:ZnWO4 heterostructure with enhanced photocatalytic activity for pollutant degradation in liquid and gas phases
000864624 260__ $$aAmsterdam [u.a.]$$bScienceDirect$$c2019
000864624 3367_ $$2DRIVER$$aarticle
000864624 3367_ $$2DataCite$$aOutput Types/Journal article
000864624 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568036591_22205
000864624 3367_ $$2BibTeX$$aARTICLE
000864624 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864624 3367_ $$00$$2EndNote$$aJournal Article
000864624 520__ $$aHere we report, for the first time, a versatile ZnO:ZnWO4 heterostructure active for photocatalytic degradation of pollutants in liquid and gaseous media, prepared using a simple hydrothermal method driven by the differences in chemical solubility of the components. This heterostructured material was effective in the oxidation of methylene blue dye, caffeine, and amiloride in aqueous solution, and ethylene gas. High photocatalytic performance was attributed to the spontaneous formation of heterojunctions between ZnO and ZnWO4 during the synthesis step, increasing electron/hole pair lifetimes. Recycling experiments revealed that the heterostructure was stable over time, indicating the commercial potential of this material.
000864624 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000864624 588__ $$aDataset connected to CrossRef
000864624 7001_ $$00000-0003-2077-4583$$aLopes, Osmando F.$$b1
000864624 7001_ $$0P:(DE-HGF)0$$aFerreira, Débora C.$$b2
000864624 7001_ $$0P:(DE-Juel1)177079$$aRibeiro, Caue$$b3$$eCorresponding author
000864624 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2019.05.144$$gVol. 797, p. 1299 - 1309$$p1299 - 1309$$tJournal of alloys and compounds$$v797$$x0925-8388$$y2019
000864624 909CO $$ooai:juser.fz-juelich.de:864624$$pVDB
000864624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177079$$aForschungszentrum Jülich$$b3$$kFZJ
000864624 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000864624 9141_ $$y2019
000864624 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2017
000864624 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864624 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864624 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864624 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864624 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864624 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864624 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864624 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864624 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864624 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864624 920__ $$lyes
000864624 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000864624 980__ $$ajournal
000864624 980__ $$aVDB
000864624 980__ $$aI:(DE-Juel1)IEK-3-20101013
000864624 980__ $$aUNRESTRICTED
000864624 981__ $$aI:(DE-Juel1)ICE-2-20101013