001     864625
005     20240709082047.0
024 7 _ |a 10.1016/S1872-2067(19)63393-0
|2 doi
024 7 _ |a 0253-9837
|2 ISSN
024 7 _ |a 1872-2067
|2 ISSN
024 7 _ |a 2128/24391
|2 Handle
024 7 _ |a WOS:000495145800015
|2 WOS
037 _ _ |a FZJ-2019-04330
082 _ _ |a 540
100 1 _ |a Wang, Hongjia
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Solar-Heating Boosted Catalytic Reduction of CO2 under Full-Solar Spectrum
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582293018_19038
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Catalytic converting CO2 into fuels with the help of solar energy is regarded as ‘dream reaction’, as both energy crisis and environmental issue can be mitigated simultaneously. However, it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics. In this work, we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles (NPs) deposited rutile under full solar-spectrum irradiation, boosted by solar-heating effect. We found that UV and visible light can initiate the reaction, and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically. The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way. We also find the photo-thermal synergy in the Au/rutile system. We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Yanjie
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Guo, Lingju
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Xuehua
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ribeiro de Oliveira, Caue
|0 P:(DE-Juel1)177079
|b 4
700 1 _ |a He, Tao
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/S1872-2067(19)63393-0
|g Vol. 41, no. 1, p. 131 - 139
|0 PERI:(DE-600)2233701-5
|n 1
|p 131 - 139
|t Chinese journal of catalysis
|v 41
|y 2020
|x 0253-9837
856 4 _ |u https://juser.fz-juelich.de/record/864625/files/Ribeiro%20de%20Oliveira_Caue_Post%20Print.pdf
|y Published on 2019-11-14. Available in OpenAccess from 2021-11-14.
909 C O |o oai:juser.fz-juelich.de:864625
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177079
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHINESE J CATAL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21