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Abstract

The central question of systems biology is to understand how individual components of

a biological system such as genes or proteins cooperate in emerging phenotypes result-

ing in the evolution of diseases. As living cells are open systems in quasi-steady state

type equilibrium in continuous exchange with their environment, computational tech-

niques that have been successfully applied in statistical thermodynamics to describe

phase transitions may provide new insights to the emerging behavior of biological

systems. Here we systematically evaluate the translation of computational techniques

from solid-state physics to network models that closely resemble biological networks

and develop specific translational rules to tackle problems unique to living systems.

We focus on logic models exhibiting only two states in each network node. Motivated

by the apparent asymmetry between biological states where an entity exhibits boolean

states i.e. is active or inactive, we present an adaptation of symmetric Ising model

towards an asymmetric one fitting to living systems here referred to as the modified

Ising model with gene-type spins. We analyze phase transitions by Monte Carlo sim-

ulations and propose a mean-field solution of a modified Ising model of a network

type that closely resembles a real-world network, the Barabási–Albert model of scale-

free networks. We show that asymmetric Ising models show similarities to symmetric

Ising models with the external field and undergoes a discontinuous phase transition

of the first-order and exhibits hysteresis. The simulation setup presented herein can

be directly used for any biological network connectivity dataset and is also applicable

for other networks that exhibit similar states of activity. The method proposed here is

a general statistical method to deal with non-linear large scale models arising in the

context of biological systems and is scalable to any network size.
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List of symbols

Ai j Adjacency matrix

hc Critical magnetic field

β Inverse of temperature

J Coupling constant

γ Scale-free exponent

0, 1 Modified Ising spins

heff Effective magnetic field

h Magnetic field

H Hamiltonian

HM F Mean-field hamiltonian

kB Boltzmann constant

k Node degree

M Order parameter

k̄ Mean degree

m Number of preferentially attached links

−1, 1 Classical spins

N Network size

pi j Probability that new node is linked to existing node

T Temperature

Z Partition function

1 Introduction

Biological networks are multi-dimensional complex systems whose collective inter-

action in response to perturbations may lead to critical transitions from one stable

state to another. Acute asthma attacks, clinical depression, diabetes mellitus, inflam-

mation, and epileptic seizures, among many others, are examples of such sudden shifts

in the state of the system, from healthy to diseased states (Trefois et al. 2015; Wolf

et al. 2018). Such “phase transitions” are common in other complex systems such

as ecological systems (for example, spontaneous extinction of species in response to

gradual changes in external conditions) (Capitan and Cuesta 2010) or the evolution

of human language (for example, the formation of Zipfian properties) (DeGiuli 2019;

Vera et al. 2020). However, the idea that a system consisting of simple interacting units

may exhibit phase transition was initially motivated by a seminal model of magnetic

systems called the Ising model.

The Ising model is one of the simplest and most frequently studied models of

cooperative phenomena in statistical mechanics (Ising 1925). The classical Ising model

is a discrete, pairwise interacting two-state system proposed to explain the structure

and properties of ferromagnetic materials and has been solved exactly for one- and

two-dimensional lattices (Onsager 1994). In the Ising model of a two-dimensional

lattice, each site carries a spin which may be up or down, and neighboring spins prefer

to be parallel to each other. The external field prefers to orient the spins in the direction

of the field. The spins align in the same direction at low temperature, and the system
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exhibits spontaneous magnetization. At high temperatures, the spins align randomly,

and the system is paramagnetic.

Since then, Ising models have been extended to study phase transitions occurring

in more complicated topologies such as random, small-world and scale-free networks

(Albert and Barabasi 2002; Bianconi 2002; Barrat and Weigt 2000; Dorogovtsev et al.

2002; Ferreira et al. 2010; Gitterman 2000; Herrero 2002, 2008; Lopes et al. 2004;

Pekalski 2001). For example, Ising models of networks can explain how the opinion of

the individual is influenced by their contacts on opinions of people on a given subject

(Aleksiejuk et al. 2002; Bartolozzi et al. 2006; Castellano et al. 2009; Contucci 2007;

Redner 2017). Further real-world applications of Ising models of networks include

socioeconomic problems such as racial segregation in the US, group herding, human

culture (Stauffer and Hohnisch 2006); phase transitions in neural networks (Aldana

and Larralde 2004); communication in the World Wide Web (Kumar et al. 2000); and

systems biology (May and Lloyd 2001; Pastor-Satorras et al. 2015; Pastor-Satorras

and Vespignani 2001).

In this regard, the analogy between phase transitions occurring in living systems

(such as normal to diseased state transition) and physical systems (such as condensation

of water) has been well-motivated (Davies et al. 2011; Holstein et al. 2013; Trefois et al.

2015; Smith 2010). The normal state to cancer state transition has been described as a

process similar to the first-order irreversible discontinuous phase transition occurring

in physical systems (Facciotti 2013; Jin et al. 2017; Liu et al. 2013; Mojtahedi et al.

2016; Torquato 2010). The central idea is that living systems are open systems in quasi-

steady state type equilibrium in continuous exchange with their environment wherein

cells behave like a network in heat bath under external perturbations (Pastor-Satorras

et al. 2015; Scheffer et al. 2012). They survive by exporting entropy to the environment

in exchange for structural order. When a control parameter increases entropy, it causes

collective flipping of states, which drives the system to an unstable critical state (or

diseased state), thereby leading to phase transitions in living systems. In an Ising model,

an analog for such a control parameter could be temperature or magnetic field, which,

after a particular critical value, may cause the system to undergo a phase transition

(discussed in detail in Sect. 2).

An integral part of such living systems is the biological networks that they are com-

posed of—for example, the gene regulatory networks, protein interaction networks,

among many others. A gene regulatory network represents a network of genes that can

activate or suppress each other’s expression levels owing to the interaction between the

genes or due to the influence of agents external to the cell. One of the widely accepted

method and a powerful tool for qualitative analysis of dynamics in gene networks is

the Boolean dynamic modeling method. In a Boolean model of a network, nodes may

be gene or protein and may either take on or off, indicating their expression levels,

concentration, or activity. The relationships between the states of nodes are updated by

logical functions or truth tables such as AND, OR, or NOT. Though this is a powerful

tool, it requires that all possible states of the system i.e. 2N (where N is the network

size) be explicitly calculated for the time evolution of the network.

Further, most complex step scales as O(N 2) in the update schemes, and to our

knowledge, the model is usually applied to networks whose sizes are of the order of

hundred nodes (Campbell and Albert 2014; Wang et al. 2012; Zhang et al. 2008).
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This is because building such state transition graphs gets computationally expensive

as network size increases due to the exponential dependence of the size of state space

on network size, thereby making it challenging to analyze large-scale interconnected

biological networks such as, for example, the complete human genome. As a conse-

quence of this, when Boolean models are used for constructing signaling pathways

on large and dense networks, the number of optimal solutions explodes, which neces-

sitates alternative techniques from statistical physics and graph theory (Alexppoulos

et al. 2010; Mitsos et al. 2009).

For large scale simulations, a simpler model that considers gene network as a system

in continuous fluctuation that takes into account the current state of the nodes; and

does not depend very much on the microscopic details or specific genomic features

and is scalable to large sizes would be appropriate. In the method we propose, we

overcome the issue with the scale by changing the way we update the state of nodes

in response to external perturbations (such as temperature or magnetic field). Firstly,

we consider the gene regulatory network as a system that exists in a quasi-steady

state in thermal equilibrium with the environment, which aims to conserve energy as

a whole whenever it changes its configuration. We establish an initial configuration

for all nodes in the network, which may be all zeros or all ones or a combination

of zeros and ones based on prior information. Then we perform a random walk over

the configuration space. Specifically, this means that we randomly pick a node and

calculate the energy cost for the system if this node were to change its state. The

walker then hops from the initial configuration to this new configuration only if the

transition probability is energetically favorable for the whole system, else the system

retains its initial configuration ((Metropolis et al. 1953) summarized in “Appendix”).

Such “clever moves” are repeated multiple times to obtain averages to get the behavior

of the system to the external perturbation. The behavior of the system is characterized

by the mean of the summed states of the system, referred to as magnetization in the

context of the classical Ising model.

This method is an abstraction of the gene network and, therefore, only requires

the initial configuration of all nodes of the network and network connectivity. It can

calculate large scale response features, interpret gene expression of cells in large

repositories, and is scalable to network size. This is a qualitative method that can give

insights into overall organizing principles in the network and is capable of predicting

coherently working clusters in the network. However, it is important to note that,

in essence, the model we propose and the Boolean network model are not directly

comparable since the former is a thermodynamic model, and the latter is a logical

model. They are merely different ways to look at the same system. In the following

Sect. 2, we introduce the modified Ising model and motivate the biological analogs of

the Ising model by drawing parallels between physical and biological systems.

2 Model description and biological motivation

To describe phase transition in a system, we need to take into account interactions

between its parts (Goldenfeld 1992; Kardar 2007). Since systems exhibit universal

behavior near the critical point (Torabi and Davidsen 2019; Torabi and Rezaei 2016),
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a variety of statistical mechanical systems can be simulated by Ising-like models

provided that the symmetry properties of the system, the pattern of interaction, and

the dimensionality of the system is considered (Landau and Lifshitz 1980).

Given that the Ising model is simple and can predict cooperative behavior wherein

each element has two states where the energy of each element depends on its state and

that of its neighbors, it has found itself wide applications in addressing complexity in

biology in the last century. The central aspect of these studies is that usually, the control

parameters and physical properties of the Ising model are amenable to a biological

interpretation depending on the target biological system being modeled.

In protein science, for example, a relatively popular adaptation of the Ising model,

specifically the one-dimensional variant, is the homozipper, which is used as a simpli-

fied statistical thermodynamic model for protein folding. The homozipper is a sequence

of multiple repeat proteins where each element of a repeat protein is an identical and

independently folding unit that interacts with each other in a nearest-neighbor pair-

wise manner. The sequence can then be pulled apart like a zipper by mechanical force

modeled by temperature. The folding is then a process constrained by the number of

identical repeats, the energy of the repeated unit, and the interaction energy between

the folded units given by the Hamiltonian of the Ising model (Aksel and Barrick 2009;

Millership et al. 2016). This proposition of the Ising model to study order-disorder

transitions in protein science extended from one-dimensions to higher dimensions for

studying helix to coil transitions, beta-hairpin formation, hydrophobicity in protein

chains and downhill folding (Garcia-Mira et al. 2002; Kubelka et al. 2004; Kubelka

and Kubelka 2014; Lai et al. 2015; Naganathan and Munoz 2014; Munoz et al. 1997;

Irback et al. 1996; Irback and Sandelin 2000; Lobanov and Galzitskaya 2011; Zimm

and Bragg 1959).

In immunology, an Ising spin-model equivalent of the idiotypic-anti-idiotypic

immunological networks has been shown to exhibit self-organization i.e. formation of

large homogeneous domains at high temperatures. In such a system, each spin inter-

acts with its mirror-image spin and the neighbors of the image. In the Ising model of

such a system, spin up is synonymous to a proliferation of lymphocytes in an ocean

of virgin states while spin-down represents a challenge to the immune system. Thus

at low temperatures where there are few challenges and low noise, the system exhibits

order. While at high-temperature i.e. lots of diseases, a disordered system is formed

wherein the net magnetization synonymous to the activity level of lymphocytes is

close to zero (Sahimi and Stauffer 1993).

The applications of the Ising model to study genome organization is not new.

Ignoring the unique attributes of individual genes, (Baran and Ko 2006) has shown

that transcription polarity in a bacterial chromosome i.e. the preference of genes to

be coded in the leading strand of replication and their nature to form co-organized

clusters can be modeled by a one-dimensional Ising model. Like the magnetic forces

that align adjacent spins when the external magnetic field is applied, one could imagine

adhesive pseudo-forces such as nearest-neighbor interaction that cause transcription

orientation. The chromosome is then simply a series of spin-like indicator variables

like that of the 2N configurations that of the one-dimensional Ising lattice. Each gene

is oriented negative or positive, depending on the sign of the open reading frame from

which it is transcribed. Such models also allow themselves to be analytically tractable
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for the study of the effects of gene insertion and deletion. A one-dimensional long-

range Ising model has been shown to be a rather robust description of long-range

correlations in DNA sequences (Colliva et al. 2014).

Ising models have been used to analyze genetic data from affected sib-pair (ASP)

where a data point can be represented as ±1 corresponding to an allele being shared

or not by a sib-pair. The nearest neighbor interaction between adjacent dipoles is

analogous to the interaction between adjacent genetic markers on a chromosome.

The effect of an applied magnetic field i.e. a point field acting on a given particle

is analogous to the effect of a disease gene, causing an increase in allele sharing

at nearby locations. For example, in the ASP analysis, the coupling constant and

magnetic field are interpreted as the strength of genetic linkage between markers and

the effect of disease locus in distorting allele sharing in response to random genetic

and environmental effects (Majewski et al. 2001).

Furthermore, Ising-and Potts-based models have been proposed for studying phase

transitions occurring in more complicated topologies e.g., conformational restructur-

ing affected by temperature. Here a single DNA strand is modeled as a system if

interacting bases with short- and long-range interactions. Further, a set of such DNA

strands live on a Cayley tree, which is a tree-like graph where each node has an equal

number of branches. The edges of this graph may then take multiple spin values say,

±1, 0 where the former shows the existence of a Holliday junction, and zero means

vacant or no edge. The response of the system to temperature is then analyzed based on

a Translation Invariant Gibbs Measure (TIGM) (Rozikov 2017, 2018). To our knowl-

edge, these studies do not find any direct mapping between the Ising parameters such

as the temperature, magnetic field, or Boltzmann constant to genetic parameters. For

an excellent review of similarities between physical and biological systems, we point

the interested reader to (Davies et al. 2011).

More examples of applications of Ising models to biological systems include, but

is not limited to, a four-dimensional cellular automaton-like Ising model in which

cells transition between normal, proliferative, hypoxic and necrotic states has been

used to model the tumorigenesis process which involves a transition between these

pre-malignant and malignant cell states (Durrett 2013; Torquato 2010); estimating

information transfer between spins occurring in human connectome (Marinazzo et al.

2014); the transition of B-DNA to S-DNA (Ahsan et al. 1998); estimation of differ-

entially expressed genes in cancer patients (Xumeng et al. 2011); and approximation

of join expression profiles of genes using a small number of observations (Santhanam

et al. 2009).

However, to our knowledge, these models do not take into account two aspects

of modeling phase transitions in biological networks that we address in this study.

Firstly, the discovery of almost scale-free topologies of biological networks in the

last couple of decades (Albert and Barabasi 2002). Secondly, the asymmetric i.e. 0, 1

states of activity that has provided a reasonable approximation of the reality of states

in single cells (Cesar-Razquin et al. 2018; Wang et al. 2012). In this study, we address

these aspects by proposing a modified Ising model for scale-free networks with gene-

type spins. The modified Ising model is an arrangement of genes or proteins in a cell

where the interaction between the units could be short-range or long-range given by

the connectivity matrix of the network. Each unit can interact with their connections
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in a pairwise manner. These units may activate or suppress each other, given by the

binary state variable. A cell can survive in a healthy state if the majority of the units

are in an active state, and if it gains energy from the external environment. However,

external perturbations may slowly switch the cell to diseased states where the majority

of the units may be inactive. Cell survival is, therefore, dependent on conserving

energy and changing configurations only if it has a low cost. The Ising analogs for

these external variables—energy and entropy are magnetic field and temperature,

respectively. Broadly, these control parameters drive the phase transitions process

occurring in the living systems.

In this paper, we establish a numerical and theoretical framework on a simulated

scale-free network whose nodes exhibit binary states of activity. We show the condi-

tions under which this network of gene-type spins undergoes phase transition due to the

influence of temperature and magnetic field. This framework serves as a benchmark

for future studies that aim to test dynamics of the Ising model of biological networks

with gene-type spins from public databases. We refer to the model that comes out of

this as the modified Ising model; a comparison of this model to the classical Ising

model (Ising 1925) is summarized in Table 1.

Concretely, the Hamiltonian of the Ising model of such a network reads,

H = −
1

2

N
∑

i, j=1

Ji j si s j − h

N
∑

i=1

si Ji j = J Ai j (1)

where J is the coupling constant specifying the strength of interactions; Ai j is the adja-

cency matrix; h indicates the constant external field; Ai j si s j is the coupling energy

arising due to the interaction between nodes and shows the effect of cooperative behav-

ior; h
∑

i si is the energy arising due to the effect of magnetic field. The Hamiltonian

so formed from these two terms is the total energy of the system. If J > 0, neigh-

boring spins prefer to take the same values (referred to as ferromagnetic exchange

interaction in a classical Ising model); when J < 0, neighboring spins prefer to take

opposite values (referred to as anti-ferromagnetic exchange interaction in a classical

Ising model). Spins, si , s j can take values ±1 in the classical Ising model; and 0 and

1 in the modified Ising model.

In contrast, in the modified Ising model, the system is a cell containing interacting

genes with a scale-free network topology. It is an open system receiving energy from

the environment. The first term in the Hamiltonian (Eq. 3), is the two-body interaction

term exhibiting pair-wise interaction between genes. Spin values can take 0 or 1

representing the state of gene sitting on a node in the Barabási–Albert network. If the

gene is active, it takes value 1, otherwise their contribution in interacting Hamiltonian is

zero. Therefore, only if both genes in a pair-wise connection are active, they contribute

to this term. Considering that spin values in the biological model are dimensionless

Boolean values, this would be the interacting energy between genes at nodes i and

j . The second term in the Hamiltonian is a one-body interaction term exhibiting the

interaction of genes with the environment. The critical point in living systems, as open

systems, is their interactions with the environment. Therefore, h in the modified Ising

model represent this interaction and is the interaction energy between genes and the

environment.
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The higher h it is, the higher the interaction of the cell with the environment.

This parameter (which corresponds to the magnetic field in the ferromagnetic Ising

model) tries to retain active genes based on its interactions outside the cell. Minimizing

energy in Eq. 3 corresponds to having active genes or healthy state as a result of those

mentioned above pair-wise and environmental interactions. The temperature, on the

other hand, induces fluctuation that results in randomness in the state of genes. The

order parameter is then defined as the number of active genes in the cell,

M =
1

N

n
∑

i=1

si (2)

In the next sections, we will see how this system experiences a first-order phase

transition due to the change in the parameter h whose critical value influence on the

properties of the connectivity structure of the genes in the cell. Though the modified

Ising model is proposed here with an eye on gene and protein interaction networks,

the observations made here, in principle, hold for other similar real-world networks as

well. Preliminary results of this work have been presented in the form of a poster and

talk (Krishnan et al. 2018, 2019; Krishnan 2019). The paper is organized as follows:

Sect. 2 provides a short overview of the Ising model and terminologies used in the

subsequent sections of the paper along with biological motivation; in Sect. 3 we show

the conditions under which the modified Ising model can undergo phase transitions

for different initial configurations of the system (for positive and negative coupling

constants) using Monte Carlo simulations; Sect. 4 presents the mean-field solutions

and shows a mapping between classical Ising model of scale-free networks and the

modified Ising model.

3 Numerical simulations

As motivated in Sect. 1 the focus of this paper is to study the system in Eq. 3 for

modified Ising spins of the Barabási–Albert network. Such a network is constructed

based on two main properties of a real-world network - linear growth and preferential

attachment (Albert and Barabasi 2002). The network is initialized with m0 nodes that

are not connected. Subsequently, new nodes with m edges are added by an iterative

growth process to the existing m0 nodes. The resultant network has a power-law degree

distribution and is characterized by a degree exponent, 2 < γ < 3 that resembles real-

world biological networks.

We now put modified Ising spins on nodes of a Barabási–Albert network of size,

N = 5 × 103 and preferentially attached links, m = 5. We choose this network size

since it lies in a similar order of magnitude (≈ 103), such as that of gene regulatory

network of standardized datasets such as S. cerevisiae or E. coli (Balaji et al. 2006;

Gama-Castro et al. 2008). The number of links attached to grow the Barabási–Albert

network is a free parameter and cannot, to our knowledge, be directly compared to

real-world networks. Nevertheless we show the effect of the Barabási–Albert model

parameters on the modified Ising model in the subsequent sections (cf. Fig. 8).
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Fig. 1 Monte Carlo simulations of the modified Ising model of a Barabási–Albert network at magnetic

field, h = 0. Figure shows evolution of order parameter, M as a function of Temperature, T . Top panel:

modified Ising model of Barabási–Albert network with positive coupling constant, J (indicated by black

dots). Bottom panel: modified Ising model of Barabási–Albert network with negative coupling constant,

−J (indicated by black stars). Simulation parameters: network size, N = 5 × 103, preferentially-attached

links to construct Barabási–Albert network m = 5, magnitude of coupling constant, |J | = 1

Then with the standard heat bath Monte Carlo algorithm, we do a spin search for

thermal equilibrium at temperature T (cf. algorithm in “Appendix”). The number of

equilibration and sampling steps is proportional to the size of the network and has

been chosen such that the system has had sufficient time to evolve from its initial

configuration and reach a steady state. In other words, the system has visited different

states in the phase space and can now generate states that are consistent with the

parameters controlling the system. This can be verified by plotting properties of the

system, such as magnetization, until it plateaus at a fixed value. We equilibrate the

system for 2 × 104 MC steps and after this temporary period, we simulate for 3 ×
104 MC steps. This allows for an average 10 spin flips per spin. We then sample at

the end of every step and perform simulations for both ferromagnetically and anti-

ferromagnetically coupled networks, under the influence and absence of the magnetic

field.

Under no influence of the magnetic field and ferromagnetic exchange interaction, all

nodes in the network start at an active state where the order parameter, M = 1. At T <

1, the system favors order as seen in the top panel of Fig. 1. As the thermal fluctuations

in the system increases, the disorder in the system increases. The order parameter

reaches 1
2

asymptotically as T → ∞. Similarly, when the system is initialized with an

anti-ferromagnetic exchange interaction, the order parameter asymptotically reaches
1
2

as thermal fluctuations increases (as can be seen in the bottom panel of Fig. 1 at

T < 1).

Under the influence of magnetic field, the system behavior changes as seen in Figs. 2

and 3. Consider the ferromagnetically coupled modified Ising model of Barabási–
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Fig. 2 Monte Carlo simulations of the modified Ising model of a Barabási–Albert network in the presence

of a positive magnetic field, h > 0 of different magnitudes. Figure shows evolution of order parameter, M

as a function of Temperature, T for n = 20 realizations of the Barabási–Albert network. (a) modified Ising

model of Barabási–Albert network with positive coupling constant, J (indicated by dots). (b) modified Ising

model of Barabási–Albert network with negative coupling constant, −J (indicated by stars). Simulation

parameters: network size, N = 5×103, preferentially-attached links to construct Barabási–Albert network,

m = 5 and magnitude of coupling constant, |J | = 1

Albert network influenced by positive magnetic field (Fig. 2a). The field term in the

Hamiltonian is effectively a constant holding the network above the mean of two

states at 1
2

. As the magnitude of the magnetic field increases, the network takes longer

to reach the asymptotic state. For an anti-ferromagnetically coupled modified Ising

model of Barabási–Albert network, it can be observed for that for small magnitudes
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Fig. 3 Monte Carlo simulations of the modified Ising model of a Barabási–Albert network in the presence

of a negative magnetic field, h < 0 of different magnitudes. Figure shows evolution of order parameter, M

as a function of Temperature, T for n = 20 realizations of the Barabási–Albert network. (a) modified Ising

model of Barabási–Albert network with positive coupling constant, J (indicated by dots). (b) modified Ising

model of Barabási–Albert network with negative coupling constant, −J (indicated by stars). Simulation

parameters: network size, N = 5×103, preferentially-attached links to construct Barabási–Albert network

m = 5, magnitude of coupling constant, |J | = 1

of the positive magnetic field (h << 1), the asymptotic property of order parameter

vanishes as in the case of a ferromagnetically-coupled system [Fig. 2b].

However, for higher magnitudes of the magnetic field, it can be seen that the field

term can trigger activity in the network i.e. switch from M = 0 to M = 1 at 0 < T <

1 and subsequently follow the dynamics of a ferromagnetically-coupled system. A
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Fig. 4 The modified Ising model of a Barabási–Albert network exhibits phase transition under the influence

of magnetic field at a fixed Temperature, T = 0.1 for n = 20 realizations of the Barabási–Albert network.

Black dots indicate the order parameter trend for a modified Ising model of Barabási–Albert network with

positive coupling constant, J = 1. Black stars indicate the order parameter trend for a modified Ising model

of Barabási–Albert network with negative coupling constant, J = −1

negative magnetic field, on the other hand, inverts the dynamics of a ferromagnetically-

coupled modified Ising model instead. As can be seen in Fig. 3a, at −2.5 < h < 0

there is an abrupt drop in the order parameter to 0 and for lower values the network

remains inactive (as can be verified from our observations in Figs. 2 and 3). An anti-

ferromagnetically coupled network has order parameter M = 0 at h = 0. Lower values

of the magnetic field keep the network in the inactive state. For a positive magnetic field,

the network undergoes a relatively smooth (almost abrupt) phase transition to the active

state. Owing to this, unlike in a ferromagnetically coupled network, it can be observed

that intermediate values of order parameter and M → 1 as h increases, confirming

our observations in Figs. 2 and 3. Thus it can be inferred that the modified Ising model

of a Barabási–Albert network undergoes phase transition due to the magnetic field as

shown in Fig. 4.

It can be observed that the transition has a discontinuity in order parameter, and

hence this may be a first-order phase transition. Hysteresis loops characterize systems

that undergo a first-order phase transition. It implies that the network may show more

than one value of order parameter for a given magnetic field, h. The hysteresis loop

shows the dependence of the state of the system on its history, and it is this phenomenon

that forms memory in a hard disk drive.

The procedure to investigate the existence of hysteresis has been well-established,

particularly in the context of magnetic materials. We apply the same method for the

modified Ising model of a Barabási–Albert network summarized shortly here. Starting

with a high negative magnetic field, h, and a stable configuration of the system, we

increase the magnitude of the magnetic field slowly. For some value of h, the local field
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Fig. 5 The modified Ising model of a Barabási–Albert network exhibits hysteresis: ferromagnetically cou-

pled, J = 2 (indicated by dots). Simulation parameters: N = 5 × 103 and preferentially attached links,

m = 5. The gray curve indicates order parameter as the system is driven forward from h0 = 10 to hn = −10

and the black curve as the system is driven backward from h0 = −10 to hn = 10

for a node flips. This causes changes in the effective field of the nodes connected to this

node, thereby causing them to flip. Once the flipping in the system has thermalized,

the order parameter of the system is measured. Subsequently, the magnetic field is

increased slightly, and the process repeated until the order parameter attains a stable

state. This way, one can obtain one half of the hysteresis loop (for h from −∞ to

∞). The other half of the hysteresis loop is obtained when the magnetic field, h is

decreased (for h from ∞ to −∞).

A typical hysteresis loop takes the form of a sigmoid; however, in the case of a

ferromagnetically coupled modified Ising model the loop is almost a rectangle, as

can be seen in Fig. 5a. We will analyze these observations and discuss the asymptotic

behavior in detail using analytical approaches in Sect. 4.

4 Analytical methods

4.1 Mean field approximation

One of the most important analytical tool to study disordered systems is represented

by mean-field theories. Mean field theory is frequently used due to its conceptual

simplicity, as a useful tool, especially when there is no exact solution for the problem.

This approximation is used to reduce an interacting problem to a non-interacting one

which is easier to solve.
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Theorem 1 The critical magnetic field of the modified Ising model of a Barabási–

Albert network scales linearly with coupling constant and preferentially attached

links used to construct the network.

Proof Let us consider the modified Ising model of a Barabási–Albert network treated

numerically in Sect. 3. Rewriting the Hamiltonian of the ferromagnetically-coupled

system with gene-type spins 0, 1,

H0,1 = −
1

2

N
∑

i, j=1

Ji j si s j − h

N
∑

i=1

si si = 0, 1 J > 0 (3)

where Ji j = J Ai j . Since the adjacency matrix Ai j is symmetric, the factor 1
2

is

included so as not to count any pairs twice. We can write the interactions between

neighboring spins in terms of their deviations from the average spin M as,

si s j = [(si − M) + M][(s j − M) + M]

= (si − M)(s j − M) + M(s j − M) + M(si − M) + M2 (4)

where M = 1
N

∑N
i=1 si is the order parameter. Assuming that the fluctuations around

the mean spin is small, the Hamiltonian can be rewritten as,

HM F = −
1

2

N
∑

i, j=1

Ji j [M(s j − M) + M(si − M) + M2] − h

N
∑

i=1

si

= −




Jm

2

N
∑

i=1

N
∑

j=1

Ai j si +
J M

2

N
∑

i=1

N
∑

j=1

Ai j s j −
J M2

2

N
∑

i, j=1

Ai j



 − h

N
∑

i=1

si

(5)

Consider the second term in the right hand side of Eq. 5. This can be written as

(i → j):

J M

2

N
∑

i=1

N
∑

j=1

A j i si =
J M

2

N
∑

i=1

N
∑

j=1

Ai j s j (6)

since Ai j = A j i , A is symmetric. Therefore from Eqs. 5 and 6,

HM F =
J M2

2

N
∑

i, j

Ai j − J M

N
∑

i, j

Ai j si − h

N
∑

i=1

si (7)
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This is the mean-field Hamiltonian for a chosen realization of the network. So the

ensemble average of the Hamiltonian of the system is,

〈HM F 〉 =
J M2

2

N
∑

i, j

〈Ai j 〉 − J M

N
∑

i, j

〈Ai j 〉si − h

N
∑

i=1

si (8)

For a Barabási–Albert network,

〈Ai j 〉 = pi j =
1

2m N
ki k j (9)

where ki is the number of links of the i th node of the network Bianconi (2002) (cf.

“Appendix”). From Eqs. 8 and 9, using the relation
∑N

i=1 ki =
∑N

j=1 ≈ 2m N ,

〈HM F 〉 =
J M2

2

N
∑

i, j=1

1

2m N
ki k j − Jm

N
∑

i, j=1

1

2m N
ki k j si − h

N
∑

i=1

si

=
J M2

4m N

N
∑

i=1

ki

N
∑

j=1

k j −
J M

2m N

N
∑

j=1

k j

N
∑

i=1

ki si − h

N
∑

i=1

si

=
J M2

4m N
× 2m N × 2m N − J M

N
∑

i=1

ki si − h

N
∑

i=1

si

= J M2m N − (h + Jmki )
︸ ︷︷ ︸

heff
i

si

〈HM F 〉 = J M2m N −
N

∑

i=1

heff
i si , heff

i = (h + Jmki )

(10)

Hence the modified Ising model of a Barabási–Albert network reduces to a system

of non-interacting spins in an effective local field, heff
i = (h + Jmki ). The partition

function can be evaluated as,

Z =
∑

config

e−β〈HM F 〉

=
∑

si =0,1

. . .
∑

sN =0,1

e
−β

[

J M2m N−
∑N

i=1 heff
i si

]

= e−β J M2m N
∏

i

( ∑

0,1

eβheff
i si

)

(11)

Z = e−β J M2m N
∏

i

(

1 + eβheff
i

)
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The mean spin, M can be calculated from the partition function using the following

relation:

M =
1

N

N
∑

i=1

si

=
1

Nβ

∂ ln Z

∂h

(12)

From this, evaluating ln Z ,

ln Z = −β J M2m N +
∑

i

ln
[

1 + eβ(h+J Mki )
]

(13)

Therefore from Eqs. 12 and 13,

M =
1

N

N
∑

i=1

eβ(h+J Mki )

1 + eβ(h+J Mki )
(14)

⊓⊔

Therefore the central mean-field equation for ferromagnetically coupled Barabási–

Albert network with asymmetric spins takes the implicit form,

M =
1

N

N
∑

i=1

1

1 + e−β(h+J Mki )
(15)

Similarly for anti-ferromagnetically coupled Barabási–Albert network (J → −J ) the

central mean-field equation is,

M =
1

N

N
∑

i=1

1

1 + e−β(h−J Mki )
(16)

Note that the order parameter depends on the coupling constant, J and node degree, ki .

Let us first study the behavior of the system in the absence of magnetic field. The mean-

field equation for ferromagnetically coupled Barabási–Albert network with gene-type

spins and no external field is,

M =
1

N

N
∑

i=1

1

1 + e±β J Mki
(17)

where ± stands for ferromagnetically and anti-ferromagnetically coupling respec-

tively. From Eq. 17 we can investigate the asymptotic behavior for ferromagnetically
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and anti-ferromagnetically coupled modified Ising model of a network. For a fer-

romagnetically coupled Barabási–Albert network when T → ∞, β J Mki → 0, so

exp(−β J Mki ) → 1 	⇒ M → 1
2

. As T → 0, β J Mki → ∞, so exp(−β J Mki ) →
0 	⇒ M → 1. These confirm the observations in the top panel in Fig. 1. Simi-

larly for an anti-ferromagnetically coupled modified Ising model of a Barabási–Albert

network we can verify the limit cases: as T → ∞, β J Mki → 0, exp(β J Mki ) →
1 	⇒ M → 1

2
. On the other hand, as T → 0, exp(β J Mki ) → ∞ 	⇒ M → 0.

These validate the observations in the bottom panel of Fig. 1. In order to compare the

results of mean-field approximation with Monte Carlo simulations, we have plotted

the results using these two different approaches in Fig. 6 which also shows a slight

discrepancy between the numerical simulations and the mean-field ansatz. This arises

because we neglect the spin product term in the mean-field approximation with the

assumption that the fluctuations around the mean spin is small (Eq. 4).

For T >> 1, using Taylor expansion M can be approximated as, M ≈ 1
2±β Jm

. We

can conclude that, for a fixed large T in ferromagnetically coupled systems, those with

larger J and M have larger M and vice versa. This investigation predicts the behavior

of the system presented in Fig. 7 and validates Monte Carlo simulations. The situation

is reversed for an anti-ferromagnetically coupled system due to the presence of plus

sign in the denominator. Eqs. 15 and 16 indicates that at T >> 1,

M ≈
1

2

[
2 + βh

2 ± β Jm

]

(18)

However, in both cases, the asymptotic behavior of the system is preserved, for

T → ∞ (or β → 0), M → 1
2

(cf. Eq. 18). In the case where T not tending to

∞, the value of M depends on the magnitude and direction of magnetic field, h. This

implies that for an anti-ferromagnetically coupled system, when h > Jm then m > 1
2

;

however, for h < Jm we have m > 1
2

. Similar conclusions can be made when h is

negative in a ferromagnetically coupled system. Therefore, the behavior of the system

changes at |hc| = Jm.

Getting back to our biological model, with J > 0, when the majority of the genes

are active above the critical h(hc), this represents a healthy state. On the other hand,

when the majority of cells are inactive below the critical h(hc), this represents a disease

state. This different behaviour is also illustrated in Fig. 2.

In other words, consider the limit of small T where we can neglect fluctuations.

In this case, our biological system, have an order parameter 1 for hc > J M and 0

for hc < J M . Therefore, above critical parameter hc, all the genes are active while

they suddenly become inactive below hc as a result of a first-order phase transition.

This critical external energy interaction depends on the strength of internal interaction

(coupling constant J in gene-gene interactions) as well as the parameter m of the

Barabási–Albert network.

This approximates the critical magnetic field, hc ≈ 5 for the choice of simulation

parameters, which is very close to our observations from numerical simulations as can

be verified in Figs. 2 and 3. Although the analytical results predict that the network

size does not influence phase transition in the modified Ising model of the Barabási–
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(a)

(b)

Fig. 6 Mean-field theory validates observations from numerical simulations for a modified Ising model of

a Barabási–Albert network in the absence of magnetic field. Figure shows evolution of order parameter, M

as a function of Temperature, T : (a) for a modified Ising model of Barabási–Albert network with positive

coupling constant, J . Black dots indicate Monte Carlo sampling points for n = 20 realizations of the

Barabási–Albert network. Black curve indicates the trend predicted by the central mean-field equation.

(b) for a modified Ising model of Barabási–Albert network with negative coupling constant, −J . Black

stars indicate Monte Carlo sampling points for n = 20 realizations of the Barabási–Albert network. Black

curve indicates the trend predicted by the central mean-field equation. Simulation parameters: network size,

N = 5 × 103, preferentially-attached links to construct Barabási–Albert network m = 5, magnitude of

coupling constant, |J | = 1
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(a)

(b)

Fig. 7 Monte Carlo simulations of modified Ising model of a Barabási–Albert network of size, N = 5×103

at h = 0 and positive coupling constant, J for n = 20 realizations of the Barabási–Albert network. (a) for

coupling constants, J = 1 and J = 5 with m = 3. (b) for different choice of preferentially attached links,

m = 3 and m = 7 with J = 1. Simulation parameters: network size, N = 5 × 103, preferentially-attached

links to construct Barabási–Albert network m = 5, magnitude of coupling constant, |J | = 1

Albert network, the numerical results predict a weak dependence of hc on network

size (Fig. 8c), which appears in systems with large network sizes. The dependence on

parameters J and m is over-estimated by the mean-field calculations as can be seen

in Fig. 7. In the next Sect. 4.1 we will derive the expression for the critical magnetic
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(a) (b)

(c)

Fig. 8 Dependence of critical magnetic field, hc on network parameters for a modified Ising model of a

Barabási–Albert network of size N = 5 × 103 with positive coupling constant, J for n = 20 realizations

of the Barabási–Albert network. (a) Coupling constant, J with fixed m = 5. (b) Number of preferentially

attached links to construct Barabási–Albert network, m with fixed J = 1. (c) on network size, N with other

simulation parameters fixed to J = 1 and m = 5. Blue dots indicate results from Monte Carlo simulations

and black line indicates analytical results

field by mapping the modified Ising spin system to the classical spin system on a

Barabási–Albert network.

Theorem 2 There exists a transformation between a modified Ising model and the

classical Ising model.

Proof The numerical and analytical observations presented in Sects. 3 and 4 can be

validated by mapping the Hamiltonian of the modified Ising model of Barabási–Albert

network H0,1 to the well-established classical Ising spin system on Barabási–Albert

network H−1,1. Rewriting the modified Ising model Eq. 3,

H0,1 = −
1

2

N
∑

i, j

Ji j si s j − h

N
∑

i=1

si si = 0, 1 (19)
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This can be mapped to the Hamiltonian of the classical spin system by introducing

new spin variables as,

s′
i = 2

(

si −
1

2

)

(20)

For si = 0 → s′
i = −1 and for si = 1 → s′

i = 1. Substituting the spin variables in

the Hamiltonian Eq. 19 we make the H0,1 → H−1,1 transformation,

H0,1 =
−1

2

N
∑

i, j

Ji j si s j − h

N
∑

i=1

si si = 0, 1

H−1,1 =
−1

2
Ji j

( s′
i + 1

2

)( s′
j + 1

2

)

− h

N
∑

i=1

( s′
i + 1

2

)

s′ = −1, 1

=
−1

2

N
∑

i, j

Ji j

4
s′

i s
′
j −

1

2

N
∑

i, j

Ji j

4
(s′

i + s′
j ) −

1

2

N
∑

i, j

Ji j

4
−

h

2

N
∑

i=1

s′
i −

h

2

(21)

Since Ji j = J j i ,
∑N

i, j (s
′
i + s′

j ) = 2
∑N

i, j s′
i , eq. 21 can be re-written as,

H−1,1 = −
1

2

N
∑

i, j

Ji j

4
s′

i s
′
j −

N
∑

i, j

Ji j

2
si −

N
∑

i, j

Ji j

8
−

h

2

N
∑

i=1

s′
i −

h

2

= −
1

2

N
∑

i, j

Ji j

4
︸︷︷︸

new coupling,J′
ij

s′
i s

′
j −

N
∑

i=1

[h

2
+

N
∑

j=1

Ji j

2

]

︸ ︷︷ ︸

new local magnetic field, h′

s′
i −

[ N
∑

i, j

Ji j

8
+

h

2

]

︸ ︷︷ ︸

constant,E0

(22)

So the problem of an Ising model with gene-type spin system is mapped on to a

problem of Ising model with classical spin system as,

H−1,1 = E0 −
1

2

N
∑

i, j

J ′
i j s

′
i s

′
j −

N
∑

i=1

h′
i s

′
i (23)

where constant E0 = −
∑N

i, j

Ji j

8
− h

2
, new coupling J ′

i j = Ji j

4
and new local magnetic

field, h′ = h
2

+
∑N

j=1
Ji j

2
. The fact that even in the absence of magnetic field there is

an intrinsic local magnetic field, a
∑N

i, j

Ji j

2
in the system reflects the asymmetricity

123



Amodified Ising model of Barabási–Albert network with… 791

of the spins present in the problem. In principle, any physical quantity of the system

of modified Ising model of a interaction can therefore be derived from the system of

Ising spins,

Z0,1(Ji j , h) = eβE0 Z−1,1(J ′
i j , h′

i ) (24)

However we are interested in the critical magnetic field as derived in Sect. 4.1. Note

that, the first term of the right hand of Eq. 23 is a constant and by redefinition of the

zero of energy we have,

H = −
1

2

N
∑

i, j

J ′
i j s

′
i s

′
j −

N
∑

i=1

h′
i s

′
i (25)

This is the Hamiltonian for a chosen realization of the network. So the ensemble

average of the system Hamiltonian is,

〈HM F 〉 = −
1

2

N
∑

i, j

〈J ′
i j 〉s

′
i s

′
j −

N
∑

i=1

〈h′
i 〉s

′
i (26)

where,

〈h′
i 〉 =

h

2
+

−J

2

N
∑

j=1

Ai j

=
h

2
−

J

2

N
∑

j=1

ki k j

2m N

〈h′
i 〉 =

h

2
−

J

2
ki

(27)

⊓⊔

Remark 1 From the above transformation to the classical Ising model, the average

critical field for the modified Ising model can be verified.

The average critical field for the system hc can be derived by,

hc

2
−

J

2
k̄ = 0 (28)

where ki is approximated by the average number of links, k̄. Note that k̄ =
1
N

∑N
i=1 ki ≈ 1

N
× 2m N = 2m, thus,

hc ≈ Jm (29)
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This validates our results presented in Sect. 4.1. Eq. 29 predicts that the critical mag-

netic field depends linearly on J and m. The numerical simulations confirms the

analytical predictions on critical magnetic field (Fig. 8a and b).

5 Conclusions

In living systems, collective flipping of coherently expressed genes is associated with

disease progression. This flipping causes the step by a step-change in the phenotype

of the cell, causing it to transition from normal phase to diseased phase. Similarly, in

magnetic systems, collective flipping of spins is associated with the loss of sponta-

neous magnetization. Therefore it is intuitive to consider gene networks as two-state

thermodynamic systems in a heat bath obeying Boltzmann statistics.

On the one hand, in the statistical physics community, there have been extensive

studies on phase transitions occurring in Ising models of scale-free networks with

classical spins (discussed in Sect. 1). These methods are analytically tractable and

applicable to very large sizes. On the other hand, in the systems biology community, a

wealth of literature exists that motivates the modeling of networks with binary states

for small to medium sizes (discussed in Sect. 2). This work on modified Ising model

lies at the intersection of statistical physics and network biology and is presented with

an intention to bring the two schools of thought together.

In this regard, we have proposed here an adaptation of a well-established model in

statistical mechanics that could be used to study phase transitions in living systems.

This model allows simplification of interactions in complex systems; can be stud-

ied analytically; and renders itself adaptable to the representation of complex genetic

systems, thereby allowing testing of the diverse hypothesis that may cause complex

disorders. The modified Ising model is an adaptation of the classical Ising model con-

structed for networks with a scale-free-like structure and whose activity is described

by a binary random variable. This is a general statistical method to deal with poorly

understood non-linear large scale models arising in the context of biological networks.

We have presented a basic numerical and theoretical framework to investigate

phase transitions using modified Ising model where the control parameters energy

and entropy are modeled by the magnetic field and temperature, respectively. Tak-

ing the Barabási–Albert model as the toy model, we have shown that such a system

undergoes phase transition owing to the influence of the critical magnetic field. This is

synonymous to a simple Mendelian disease where there is a strong field near the dis-

eased gene. In complex diseases, the influence of the magnetic field is spread among

different genes with different strengths.

The critical magnetic field of the system scales linearly as a function of the number

of preferentially attached links and coupling constant. Further, we have shown that

the modified Ising model can be mapped to a classical Ising model of a Barabási–

Albert network. The simulation setup presented herein can be directly used for any

biological network connectivity dataset and is also applicable to other networks that

exhibit similar states of activity. The model can be adapted for directed or weighted

networks and could also take a continuum of activity states such as in a Potts model.

Additional interaction terms may be added to the Hamiltonian to model epistatic

123



Amodified Ising model of Barabási–Albert network with… 793

interactions between genes. Further, the modified Ising model is capable of predicting

the existence of structurally or functionally organized clusters in the network.

We have shown that a purely qualitative model such as the modified Ising model

is capable of predicting phase transitions given only the connectivity without logical

rules or kinetic parameter data. This indicates that dynamics on these networks may

depend more on structure than on the specific details of the processes. The modified

Ising model is capable of scaling to networks of sizes up to tens of thousands and can

potentially predict similarities between apparently unrelated complex systems.

Funding Open Access funding provided by Projekt DEAL. This work was supported by the Deutsche

Forschungsgemeinschaft (DFG) through GSC111; and Exploratory Research Space (ERS) Seed Fund 2017

in Computational Life Sciences (CLS001). All simulations were performed using the RWTH Compute

Cluster under general use category; priority category allocated to AICES and JRC users; and with specific

computing resources granted by RWTH Aachen University under project rwth0348. The authors gratefully

acknowledge the generous support of the aforementioned funding and computing resources.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

A. Metropolis algorithm

• A random node in the network is picked.

• A trial flip of its spin, is performed and energy cost to the system to change its

configuration is then calculated.

• If energy difference is less than zero, it leads to a lower energy state, and hence

the network is updated to the new configuration.

• Else, if energy difference is greater than zero, a random number is generated.

• The system is allowed to move to a higher energy state only if the random number

is greater than the energy difference.

B. Approximation of ensemble average of adjacencymatrix by network

parameters

Here we summarize the approach from Bianconi (2002) to reduce mean adjacency

matrix over many realization of Barabási–Albert network to network parameters. Let

us consider a Barabási–Albert network of N nodes. Starting from a small number of

nodes n0 and links m0 (where n0, m0 << N ), the network is constructed iteratively by

the constant addition of nodes with m links. The new links are preferentially attached

to well connected nodes in such a way that at time t j , the probability pi j that the new
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node j is linked to node i with connectivity ki (t j ) is given by,

pi j = m
ki (t j )

∑ j
α=1 kα

(30)

is proportional to the number of links ki at time t j , and number of preferentially

attached links m. The dynamic solution of connectivity at time ti is,

ki = m

√

t

ti
(31)

From Eqs. 30 and 31 we have,

pi j = m
m

√
t
ti

∑ j
α=1 kα(t)

(32)

If N is large we can approximate the total number of edges in the network at time

t j , given by the sum
∑ j

α=1 kα as,

j
∑

α=1

kα = m0 + 2mt j ≈ 2mt j (33)

because m0 << N . The factor 2 comes from the fact that as we create a link which

connects two nodes, the number of links of each of them increases by 1. Substituting

Eq. 33 in 32,

pi j =
m2

√
t j

t1

2mt j

=
m

2

1
√

ti t j

(34)

The adjacency elements of the network Ai j are equal to 1 if there is a link between

node i and j and 0 otherwise. Consequently the mean over many copies of a Barabási–

Albert network

〈Ai j 〉 = pi j =
m

2

1
√

ti t j

(35)
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From Eq. 31 we can re-write for t = N steps,

ki (t) = m

√

t

ti

ki (N ) = m

√

N

ti

ti =
m2 N

k2
i

(36)

and similarly,

t j =
m2 N

k2
j

(37)

From Eqs. 36 and 37,

〈Ai j 〉 =
m

2

1
√

m2 N

k2
i

√

m2 N

k2
j

=
1

2m N
ki k j

(38)

The average of the adjacency matrix over many realizations can be approximated

by the network parameters as,

〈Ai j 〉 =
1

2m N
ki k j (39)
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