000864628 001__ 864628
000864628 005__ 20240711101523.0
000864628 0247_ $$2doi$$a10.3762/bjnano.10.155
000864628 0247_ $$2Handle$$a2128/22718
000864628 0247_ $$2altmetric$$aaltmetric:64462803
000864628 0247_ $$2pmid$$apmid:31467822
000864628 0247_ $$2WOS$$aWOS:000479270500001
000864628 037__ $$aFZJ-2019-04333
000864628 082__ $$a620
000864628 1001_ $$00000-0002-8239-0043$$aWrana, Dominik$$b0$$eCorresponding author
000864628 245__ $$aKelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation
000864628 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2019
000864628 3367_ $$2DRIVER$$aarticle
000864628 3367_ $$2DataCite$$aOutput Types/Journal article
000864628 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568036701_22204
000864628 3367_ $$2BibTeX$$aARTICLE
000864628 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864628 3367_ $$00$$2EndNote$$aJournal Article
000864628 520__ $$aControlling the work function of transition metal oxides is of key importance with regard to future energy production and storage. As the majority of applications involve the use of heterostructures, the most suitable characterization technique is Kelvin probe force microscopy (KPFM), which provides excellent energetic and lateral resolution. In this paper, we demonstrate precise characterization of the work function using the example of artificially formed crystalline titanium monoxide (TiO) nanowires on strontium titanate (SrTiO3) surfaces, providing a sharp atomic interface. The measured value of 3.31(21) eV is the first experimental work function evidence for a cubic TiO phase, where significant variations among the different crystallographic facets were also observed. Despite the remarkable height of the TiO nanowires, KPFM was implemented to achieve a high lateral resolution of 15 nm, which is close to the topographical limit. In this study, we also show the unique possibility of obtaining work function and conductivity maps on the same area by combining noncontact and contact modes of atomic force microscopy (AFM). As most of the real applications require ambient operating conditions, we have additionally checked the impact of air venting on the work function of the TiO/SrTiO3(100) heterostructure, proving that surface reoxidation occurs and results in a work function increase of 0.9 eV and 0.6 eV for SrTiO3 and TiO, respectively. Additionally, the influence of adsorbed surface species was estimated to contribute 0.4 eV and 0.2 eV to the work function of both structures. The presented method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices.
000864628 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000864628 588__ $$aDataset connected to CrossRef
000864628 7001_ $$00000-0002-1069-1840$$aCieślik, Karol$$b1
000864628 7001_ $$00000-0003-1959-3160$$aBelza, Wojciech$$b2
000864628 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b3
000864628 7001_ $$00000-0001-8773-2754$$aSzot, Krzysztof$$b4
000864628 7001_ $$00000-0002-6931-3545$$aKrok, Franciszek$$b5
000864628 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.10.155$$gVol. 10, p. 1596 - 1607$$p1596 - 1607$$tBeilstein journal of nanotechnology$$v10$$x2190-4286$$y2019
000864628 8564_ $$uhttps://juser.fz-juelich.de/record/864628/files/2190-4286-10-155.pdf$$yOpenAccess
000864628 8564_ $$uhttps://juser.fz-juelich.de/record/864628/files/2190-4286-10-155.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864628 909CO $$ooai:juser.fz-juelich.de:864628$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b3$$kFZJ
000864628 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000864628 9141_ $$y2019
000864628 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864628 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864628 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2017
000864628 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864628 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864628 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864628 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864628 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864628 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864628 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000864628 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864628 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864628 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864628 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864628 920__ $$lyes
000864628 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000864628 9801_ $$aFullTexts
000864628 980__ $$ajournal
000864628 980__ $$aVDB
000864628 980__ $$aUNRESTRICTED
000864628 980__ $$aI:(DE-Juel1)IEK-3-20101013
000864628 981__ $$aI:(DE-Juel1)ICE-2-20101013