001     864631
005     20240619091955.0
024 7 _ |a 10.1111/febs.15015
|2 doi
024 7 _ |a 0014-2956
|2 ISSN
024 7 _ |a 0945-5795
|2 ISSN
024 7 _ |a 1432-1033
|2 ISSN
024 7 _ |a 1742-464X
|2 ISSN
024 7 _ |a 1742-4658
|2 ISSN
024 7 _ |a 2128/24258
|2 Handle
024 7 _ |a pmid:31330084
|2 pmid
024 7 _ |a WOS:000479584400001
|2 WOS
024 7 _ |a altmetric:75524166
|2 altmetric
037 _ _ |a FZJ-2019-04336
082 _ _ |a 610
100 1 _ |a Lorenz, Charlotte
|0 P:(DE-Juel1)168353
|b 0
|u fzj
245 _ _ |a Farnesylation of human guanylate‐binding protein 1 as safety mechanism preventing structural rearrangements and uninduced dimerization
260 _ _ |a Oxford [u.a.]
|c 2020
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580915111_7428
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Human guanylate‐binding protein 1 (hGBP1) belongs to the family of dynamin‐like proteins and is activated by addition of nucleotides, leading to protein oligomerization and stimulated GTPase activity. In vivo, hGBP1 is post‐translationally modified by attachment of a farnesyl group yielding farn‐hGBP1. In this study, hydrodynamic differences in farn‐hGBP1 and unmodified hGBP1 were investigated using dynamic light scattering (DLS), analytical ultracentrifugation (AUC) and analytical size‐exclusion chromatography (SEC). In addition, we performed small‐angle X‐ray scattering (SAXS) experiments coupled with a SEC setup (SEC‐SAXS) to investigate structural properties of nonmodified hGBP1 and farn‐hGBP1 in solution. SEC‐SAXS measurements revealed that farnesylation keeps hGBP1 in its inactive monomeric and crystal‐like conformation in nucleotide‐free solution, whereas unmodified hGBP1 forms a monomer–dimer equilibrium both in the inactive ground state in nucleotide‐free solution as well as in the activated state that is trapped by addition of the nonhydrolysable GTP analogue GppNHp. Nonmodified hGBP1 is structurally perturbed as compared to farn‐hGBP. In particular, GppNHp binding leads to large structural rearrangements and higher conformational flexibility of the monomer and the dimer. Structural changes observed in the nonmodified protein are prerequisites for further oligomer assemblies of farn‐hGBP1 that occur in the presence of nucleotides.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ince, Semra
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Tao
|0 P:(DE-Juel1)174389
|b 2
700 1 _ |a Cousin, Anneliese
|0 P:(DE-Juel1)139572
|b 3
|u fzj
700 1 _ |a Batra‐Safferling, Renu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nagel‐Steger, Luitgard
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Herrmann, Christian
|0 0000-0002-1824-3647
|b 6
700 1 _ |a Stadler, Andreas M.
|0 P:(DE-Juel1)140278
|b 7
|e Corresponding author
773 _ _ |a 10.1111/febs.15015
|g p. febs.15015
|0 PERI:(DE-600)2172518-4
|n 3
|p 496-514
|t The FEBS journal
|v 287
|y 2020
|x 1742-4658
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864631/files/Lorenz_et_al-2020-The_FEBS_Journal.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864631/files/Lorenz_et_al-2020-The_FEBS_Journal.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864631
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168353
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)139572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)140278
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FEBS J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|k ICS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21