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Abstract—This contribution introduces a new system for dis-
tributed model predictive control of energy systems. This system
uses multiple agents where each agents optimizes a subsystem.
A central instance coordinates the individual agents and takes
care of feasibility of the combination of the single solutions. The
advantages of this approach are increased maintainability and
privacy for the individual agents, thus increasing applicability
to real-world systems where often multiple parties are involved
in a single energy system. Where adequate, the agents perform
MPC to control their subsystems. The system and method can be
chosen for each agent individually. In order to build this system
a framework is developed as existing frameworks lack one or
more required features for the overall system. A small example
is presented together with first results.

I. INTRODUCTION

According to the Paris agreement the temperature increase

should be no more than 2◦C. Preferably the increase would

be no more than 1.5◦C [1]. According to [2] the energy

sector is responsible for over a third of the global CO2

emissions in 2010. This is due to fossil fuels (coal, oil, and

natural gas) burned in order to provide heat and electricity.

Increasing the share of renewable energy sources in the overall

electricity production decreases the CO2 emissions in that

sector. The disadvantage of many renewable energy sources

as photovoltaic (PV) and wind power plants is that their

energy production is volatile and can only be controlled more

limited than conventional power plants. That volatility makes

it harder to provide a permanently sufficient power supply

as the production is increasingly dependent on wind or solar

irradiation. To better cope with the more volatile supply, the

demand should be able to follow the changes in production.

This is getting more important with a further increasing share

of renewable energy sources.

When optimizing the power demand (e.g. reducing costs)

of multiple buildings – or consumers in general – different

problems can arise. These issues can occur regardless of

whether the context is domestic or if the system is planned to

control commercial or industrial systems. In all three situations

the overall system can exhibit an increasing number of units

or machines and – more importantly – often include different

participants. As these participants likely want to keep their

privacy, creating a mathematical model of the entire system

becomes very difficult or even impossible. Furthermore this

mathematical model would be difficult and time consuming

to solve due to its size and complexity. The last issue is that

maintaining or adapting such a big model can be challenging.

One approach to deal with those issues is to split the

system in such a way, that each participant is described by

a subsystem. Each subsystem is then solved separately and

the single results are combined to generate a solution for the

total system. This is done in multiple iterations to converge

to a feasible solution for the overall system. The digital

representation of each participant will be referred to as agent

in the rest of the paper.

The second chapter of this publication introduces model

predictive control and distributed systems in general and also

refers to current systems. Followed by that the new system

is shown, explained how it works, and in which aspects it

differs from other current implementations. Afterwards, the

introduced system is illustrated with an example and some

exemplary results are shown. In the end a short summary is

given and future development named.

II. STATE OF THE ART SYSTEMS

There are multiple ways to control systems. This publication

will focus on model predictive control (MPC) and distributed

control systems as the developed system uses these strategies

for controlling.

Model predictive control is a way to control systems where

for a modelled system an objective is minimized, while being

subject to given system constraints, that can explicitly be set

[3]. The minimization is normally done for a given receding

horizon for which values for the surrounding variables are

forecasted. First publications about the concept of MPC ap-

peared in the late 1970s [4]–[6]. These publications dealt either

generally with the concept, or applied it to petrolchemical

processes. In 1989 a survey about MPC was written by Garcı́a

et al. [7]. Ten years later, Morari and Lee gave an overview

over past development of MPC and expectations where MPC

will further improve [8].

The approach of splitting up larger systems into subsystems

to easier model and solve them is not new. Already in 1978

Sandell et al. examined different ways to split up and control

systems [9].

Splitting up MPC-systems into multiple parts has already

been applied for many years as exemplarily shown in [10]–

[12]. One field of application for MPC is the temporal shift-

ing of energy consumption. This is known as demand side

management (DSM), altough DSM can also be performed by

other means than MPC. The main purpose of DSM is to better

match the demand to a given supply, which is particularly



Fig. 1. Example of a distributed optimization of a system by multiple agents
with indicated communication. This system does not use a central instance
but the communication occurs between the agents directly. Taken from [10].

important for energy systems with a high share of volatile

energy sources. This often means reducing peak demands and

shifting the demand to times when less energy is consumed.

An example of such a system (also in a distributed form) is

discussed in [13].This will get more important with increasing

share of renewable energy sources.

The behaviour of subsystems often depends not only on the

current time step but also on the last time steps. Therefore it

is impossible to use a Markov decision process, which would

reduce computation time for optimizing [14].

When multiple agents control a larger system, by splitting it

up and optimizing each subsystem individually, communica-

tion is important, because not necessarily all combinations of

solutions for the subsystems are feasible solutions for the full

system as well. Different approaches for this communication

exist. Agents can communicate with either all or some other

agents or with an instance that is solely coordinating. Many

publications focus on the first approach, as it is often faster

and needs less participants in the overall optimization [10],

[15], [16]. Such a way of splitting up a larger system into

subsystems, optimizing each part individually by a separate

agent, and communicate with the other agents is described in

[10] and shown in figure 1, taken from [10]. The second way

of communicating only with a central instance is e.g. chosen

in [12].

The communication can further be differentiated into it-

erative and non-iterative approaches [15]–[17]. When com-

municating with a central instance, the iterative approach is

chosen. The advantage of communicating via a central instance

is that the agent’s privacy can be increased, as the agents

do not communicate directly with each other. Depending on

the setting this enhanced privacy can outweigh the increased

need for communication. One example of a similar system is

described in [12], where a central instance is used for commu-

nication and to find a convergence in an iterative manner. That

system still shares consumption data the other agents with each

agents. The system introduced in this contribution, follows a

similar approach, but puts a stronger emphasis on privacy in

not sharing any consumption data between different agents,

but only derived price signals. Further the communication

procedure differs here.

III. STRUCTURE OF THE NEW SYSTEM

This system aims at representing energy systems from a few

units or buildings up to the district level and to coordinate them

in real-time in order to be applicable to energy systems for real

use and not only as a case study. To better achieve that goal,

the system consists of multiple components interacting with

each other. This has several advantages. Firstly, it is easier

to develop or modify single agents, as they are not coupled

with each other and the communication is standardized and

only with a central instance. Secondly, adding or removing

individual agents to or from the system is easier. Thirdly,

due to its modularity, the system can be parallelized easily

and distributed across machines. This can enhance scalability

as well as redundancy, if needed. Lastly, there is the abil-

ity of individual agents to provide a fall-back behaviour if

other agents or the overall communication fail. In a strongly

interconnected system this would be harder to accomplish.

In this scenario, agents can change their behaviour into a

safe operation mode. This means the overall efficiency of

the system strongly decreases but the components can still

operated safely. Therefore, the whole system is less error

prone.

The communication follows the MQTT protocol to increase

interoperability between different structures and agents de-

veloped by separate people or groups. It also means faster

development of new agents, as many functions for the com-

munication already exist and are easy to import.

Because the agents optimize their subsystem themselves,

there is no need to share the internally used model or approach

at all. The communication does not run between agents but

between agent and central instance. This central instance

serves as a market spectator and market clearer and is expected

to be neutral towards individual agents, as it is not competing

with them. Communicating only with this instance means that

if two agents from the same industry but competing brands

are located in the same network they do not share any internal

knowledge or information about their processes with each

other.

For the use in a general context further features have to

be added to the system at later stages. These features include

considering the local grid topology for matching supply and

demand. Currently, the topology is not a limiting factor but

since it could get in the future, it should be considered

in general. Additionally, it may become important later to

consider several flows of different kinds in the system. These

flows can either be electricity of multiple voltages or they can

include various energy carriers, such as hydrogen or natural

gas.



A. System Components

The individual components of the system can be split

up into three categories: agents performing optimizations of

subsystems, the central instance having the overview over the

agents and the whole system, and some services required for

the agents or central instance to operate well.

1) Agents:

Many of the agents perform MPC with their included model

of the subsystem they represent and optimize the total financial

cost caused by power consumption. This optimization goal

is chosen because the system shall be applied to real energy

systems and most participants want to reduce their cost. This

also allows to include costs for CO2-emission which leads to

situations where the emissions are mitigated effectively. Some

other agents with systems with fewer degrees of freedom do

not use MPC but simpler approaches. These other approaches

within the agent do not change the systems overall approach

or structure, since the systems treats the agents as black boxes.

In the system introduced here, most agents represent a

building. In the building sector the biggest potential for DSM

lies in HVAC systems with an electric heating unit, since

most other demands are either lower or cannot be adapted

easily without affecting comfort effects [18]–[20]. Most of

the modelled buildings are equipped with a heat-pump and

therefore allow for DSM and load-shifting to further reduce

costs. This is generally possible due to the thermal mass of

the buildings. Some buildings additionally include activation

of building-components featuring low dynamics to further

leverage this option. Examples of such models can be found

in e.g. [21], [22].

Since not all buildings feature a heat pump or electric heater,

some agents represent buildings with a non-electrical heat-

supply so that the electricity is mostly needed for e.g. office

equipment – or other plug loads – and therefore cannot be

shifted.

Apart from the consumer agents – representing buildings or

other consumers – , also producers are represented by agents.

This can be simple agents representing the behaviour of a

fixed photovoltaic installation (PV). Such agents do not have

many degrees of freedom. The latter also holds for agents

representing combined-heat-and-power (CHP) plants if those

are operated in heat-driven mode. Both characteristics can be

combined to model agents representing prosumers. In addition,

an agent is needed that represents the connection to the local

power grid, as the modelled system is not fully meshed into

the local grid but only connected by a few points. This agent

e.g. wants to sell electricity to others if there is a surplus of

electricity in the local public power grid. Further agents – as

for example for electrical storages – are planned but not yet

in use.

As these agents are subject to different external constraints

and differently complex, the internal structure can be chosen

according to the given situation. The same holds true for

the used programming language as long as it is able to

communicate via MQTT. This offers the possibility to easily

deploy more complex MPC-based agents as well as simpler

agent with a rule-based strategy.

2) Central instance:

Combining the different objectives of the multiple agents

into a feasible solution is the main goal of the central instance.

This is the instance that manages the individual agents and

works with the solutions returned by the agents. It communi-

cates electricity prices for the receding horizon to all agents

and aims to get a feasible combination of loads returned. To

achieve this goal the power prices are adjusted at each iteration

for the same horizon. Once the returned loads converge for

all time-steps in the prediction horizon, the decided control

strategy can be applied by the agents. The central instance

does not know the control-parameters that are applied but only

the electrical loads that are caused by the control-parameters.

This central instance further does not communicate the overall

load to the agents but only the power-price or in extreme cases

the infeasibility of a time step if there is a lack of power-

supply for that time step and an increasing power-price will

not increase the production, as renewable and conventional

power sources combined are not sufficiently available. If there

is a large surplus of energy that would cause criticality of the

system, the combination of solutions would also be infeasible

and agents would have to ramp down production or ramp up

consumption to stabilize the system.

The central instance’s main task is to determine the power

price of the receding horizon. The chosen mode depends on the

overall goal that is pursued. The price can be the production

price of the single producers. Alternatively, environmental

costs, such as plant-specific CO2-emissions, are added to the

production price. This power price is determined similar to

a classical market clearing but with the difference that a

weighted average of the prices from all accepted offers is

calculated. Using this approach, every producer still gets the

price for which it offered electricity, but the overall market is

more sensitive to smaller changes of demand and supply and

therefore the convergence is easier to achieve.

To recognize the convergence, the central instance needs

to keep track of the development of the power requests and

offers of the single agents. In general, the instance stores only

as much information about the agents and their power loads

as needed. Storing the power load of the last iteration also

helps in the unexpected event that one of the agents fails or

shuts down unexpectedly, as then the last power load (forecast)

can be used as a hint of the planned power consumption or

production.

If new agents are added to the system, they can participate

in the communication from the start of the next iteration and

will be provided with all needed information. There is no need

to restart the central instance or other parts of the system after

adding agents. Depending on the behaviour of these agents,

no or only a few parameters for convergence of the overall

system need to be slightly adjusted.

When starting a new round of iterations, the initial power

price is chosen identical to the final power price in the last

round of iterations.





period of time. This is intended for the presented system

within a broader scope in the “Living Lab Energy Campus”

research project combining multiple aspects of the energy

sector. This includes the demonstration of multi-modal energy

systems with a high share of renewable sources, the re-usage

of waste-heat in a low-temperature heat network to heat nearby

buildings, as well as the model predictive control of a single

office building, which is equipped with many sensors for

further research. The presented system shall combine those

aspects into a harmonic energy system while still granting a

high degree of freedom to the individual subsystems for them

to perform well. An Overview of this research project can be

found in [24].

B. Showcase and First Results

A simplified example of the introduced system will be

discussed in this section. The example consists of five main

parts: A central instance, two identical demand agents each

representing a building, a supply agent representing connection

to the external power grid, and a supply agent representing a

photovoltaic installation.

The two identical agents each control a building with

concrete core activation and heat supply by a heat pump, but

without plug loads. The grid agent supplies large amounts

of power for all time steps at a fixed price of 3 (arbitrary

units). This agent acts as a dummy-version of an agent

representing a connection to the external power grid. The last

agent, representing a PV installation, provides power during

the day with a power-peak at noon at a price of 1 to give an

incentive to use renewable power sources. The PV installation

is dimensioned in such a way that around noon it provides

enough power to satisfy the maximal demand of the building

agents. This means that around noon the power price will drop

to 1 and no additional power provided by the grid-agent is

needed.

An example can be found in figure 4. There demands and

determined prices during the first and last iteration are shown

for the whole optimization horizon of 24 h starting at midnight.

The single time steps of the horizon are 15 minutes long. As

can be seen, in the first iteration a constant power price is

set to initialize the system (dark blue dashed line) and no

load shifting of the demand agents is done (dark blue solid

line). Starting from the 2nd iteration, the PV offers power at a

lower price. This leads to a decreasing average price during the

day (light blue dashed line). Because of the decreased price

the agents representing buildings move their demand towards

midday to benefit from the cheaper power (light blue dashed

line). Since only one day is optimized, the morning hours do

not differ in the scenario with a constant (cf. first iteration) and

with a volatile power price (cf. last iteration). The demand in

the evening hours after sunset in contrast changes a lot when

supplying a volatile power price. The demand after sunset

decreases, as the agents used the cheaper power during the day

to store some energy in their concrete core. Around midnight

this thermal storage seems to be depleted, and the agents need

a similar amount of power as with a fixed price.

Fig. 4. The determined prices and loads of the agents in the distributed system
controlled by a central instance for an exemplary day. The optimization if
performed for a horizon of 24 h, starting at midnight. The time steps are each
15 min long, making a total of 96 time steps in the horizon.

This last iteration is already reached after a few iterations,

where the exact number depends on multiple aspects and

therefore varies. For a new set of iterations dealing with a

horizon of 24 h starting later than midnight, the last power

price would be used as initial power price. This example is

supposed to indicate the cold-start behaviour of the system.

V. CONCLUSION AND OUTLOOK

This contribution introduces a system for district energy

systems with a high share of renewable power that provides

the possibility for multiple parties to jointly improve the

energy-usage and reduce the need for energy storage – which

always imply energy losses – without having to share their

internally used models and sensor data. This will greatly help

implementing such systems in real world situations where

more than one party is involved. Agents can use different

approaches internally, such as MPC or rule-based approaches.

This can be chosen depending on the system to be represented.

Furthermore the agents do not share any information with each

other but only with a central instance that is expected to be

neutral. This instance only receives planned load series for the

receding horizon and combines the load of all agents iteratively

to a consensus.

To enable that system, a new platform is needed that enables

the development of real-time control over such a distributed

system while granting individual agents a big degree of

freedom to control their specific subsystem in accordance with

the bigger context.

Further development will focus on development of more

advanced agents (e.g. using machine learning approaches) and

evaluate strategies to faster achieve equilibrium of supply and

demand for the full horizon at a given time. Examinations of

the behaviour of the whole system to unforeseen events, such

as losing connection to agents or large deviations from the

forecast will be performed in the future. The same holds for

benchmarking a complex system controlled with this approach

against the same system controlled with a non-distributed



approach. Beyond this, the prerequisites that must be met by

the agents are studied.
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