000864642 001__ 864642
000864642 005__ 20220930130217.0
000864642 0247_ $$2doi$$a10.1016/j.nicl.2019.101978
000864642 0247_ $$2Handle$$a2128/22682
000864642 0247_ $$2altmetric$$aaltmetric:65361461
000864642 0247_ $$2pmid$$apmid:31422337
000864642 0247_ $$2WOS$$aWOS:000504663800122
000864642 037__ $$aFZJ-2019-04344
000864642 082__ $$a610
000864642 1001_ $$0P:(DE-Juel1)167565$$aRichter, Nils$$b0$$eCorresponding author
000864642 245__ $$aSpatial distributions of cholinergic impairment and neuronal hypometabolism differ in MCI due to AD
000864642 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2019
000864642 3367_ $$2DRIVER$$aarticle
000864642 3367_ $$2DataCite$$aOutput Types/Journal article
000864642 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568009917_22205
000864642 3367_ $$2BibTeX$$aARTICLE
000864642 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864642 3367_ $$00$$2EndNote$$aJournal Article
000864642 520__ $$aElucidating the relationship between neuronal metabolism and the integrity of the cholinergic system is prerequisite for a profound understanding of cholinergic dysfunction in Alzheimer's disease.The cholinergic system can be investigated specifically using positron emission tomography (PET) with [11C]N-methyl-4-piperidyl-acetate (MP4A), while neuronal metabolism is often assessed with 2-deoxy-2-[18F]fluoro-d-glucose-(FDG) PET. We hypothesised a close correlation between MP4A-perfusion and FDG-uptake, permitting inferences about metabolism from MP4A-perfusion, and investigated the patterns of neuronal hypometabolism and cholinergic impairment in non-demented AD patients.MP4A-PET was performed in 18 cognitively normal adults and 19 patients with mild cognitive impairment (MCI) and positive AD biomarkers. In nine patients with additional FDG-PET, the sum images of every combination of consecutive early MP4A-frames were correlated with FDG-scans to determine the optimal time window for assessing MP4A-perfusion. Acetylcholinesterase (AChE) activity was estimated using a 3-compartmental model. Group comparisons of MP4A-perfusion and AChE-activity were performed using the entire sample.The highest correlation between MP4A-perfusion and FDG-uptake across the cerebral cortex was observed 60–450 s after injection (r = 0.867). The patterns of hypometabolism (FDG-PET) and hypoperfusion (MP4A-PET) in MCI covered areas known to be hypometabolic early in AD, while AChE activity was mainly reduced in the lateral temporal cortex and the occipital lobe, sparing posterior midline structures.Data indicate that patterns of cholinergic impairment and neuronal hypometabolism differ significantly at the stage of MCI in AD, implying distinct underlying pathologies, and suggesting potential predictors of the response to cholinergic pharmacotherapy.
000864642 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000864642 588__ $$aDataset connected to CrossRef
000864642 7001_ $$0P:(DE-Juel1)170079$$aNellessen, Nils$$b1
000864642 7001_ $$0P:(DE-Juel1)162382$$aDronse, Julian$$b2
000864642 7001_ $$0P:(DE-Juel1)136676$$aDillen, Kim$$b3
000864642 7001_ $$0P:(DE-Juel1)144971$$aJacobs, Heidi$$b4
000864642 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b5
000864642 7001_ $$0P:(DE-HGF)0$$aKracht, Lutz$$b6
000864642 7001_ $$0P:(DE-HGF)0$$aDietlein, Markus$$b7
000864642 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8
000864642 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b9
000864642 7001_ $$0P:(DE-Juel1)131730$$aKukolja, Juraj$$b10
000864642 7001_ $$0P:(DE-HGF)0$$aOnur, Oezguer A.$$b11
000864642 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2019.101978$$gVol. 24, p. 101978 -$$p101978 -$$tNeuroImage: Clinical$$v24$$x2213-1582$$y2019
000864642 8564_ $$uhttps://juser.fz-juelich.de/record/864642/files/20190827163703065.pdf
000864642 8564_ $$uhttps://juser.fz-juelich.de/record/864642/files/1-s2.0-S2213158219303286-main.pdf$$yOpenAccess
000864642 8564_ $$uhttps://juser.fz-juelich.de/record/864642/files/20190827163703065.pdf?subformat=pdfa$$xpdfa
000864642 8564_ $$uhttps://juser.fz-juelich.de/record/864642/files/1-s2.0-S2213158219303286-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864642 8767_ $$8OAD0000008733$$92019-08-20$$d2019-08-27$$eAPC$$jZahlung erfolgt
000864642 909CO $$ooai:juser.fz-juelich.de:864642$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167565$$aForschungszentrum Jülich$$b0$$kFZJ
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170079$$aForschungszentrum Jülich$$b1$$kFZJ
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162382$$aForschungszentrum Jülich$$b2$$kFZJ
000864642 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)162382$$a INM-3$$b2
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136676$$aForschungszentrum Jülich$$b3$$kFZJ
000864642 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)136676$$a INM-3$$b3
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144971$$aForschungszentrum Jülich$$b4$$kFZJ
000864642 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)144971$$a INM-3$$b4
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b5$$kFZJ
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ
000864642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131730$$aForschungszentrum Jülich$$b10$$kFZJ
000864642 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000864642 9141_ $$y2019
000864642 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864642 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000864642 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2017
000864642 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864642 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864642 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864642 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864642 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000864642 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000864642 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864642 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864642 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864642 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864642 920__ $$lyes
000864642 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000864642 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000864642 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000864642 980__ $$ajournal
000864642 980__ $$aVDB
000864642 980__ $$aUNRESTRICTED
000864642 980__ $$aI:(DE-Juel1)INM-3-20090406
000864642 980__ $$aI:(DE-Juel1)INM-4-20090406
000864642 980__ $$aI:(DE-Juel1)INM-5-20090406
000864642 980__ $$aAPC
000864642 9801_ $$aAPC
000864642 9801_ $$aFullTexts