000864660 001__ 864660
000864660 005__ 20210130002651.0
000864660 0247_ $$2doi$$a10.1109/TED.2019.2927001
000864660 0247_ $$2ISSN$$a0018-9383
000864660 0247_ $$2ISSN$$a0096-2430
000864660 0247_ $$2ISSN$$a0197-6370
000864660 0247_ $$2ISSN$$a1557-9646
000864660 0247_ $$2ISSN$$a2379-8653
000864660 0247_ $$2ISSN$$a2379-8661
000864660 0247_ $$2WOS$$aWOS:000482583200059
000864660 037__ $$aFZJ-2019-04358
000864660 082__ $$a620
000864660 1001_ $$0P:(DE-HGF)0$$aAcharya, Abhishek$$b0
000864660 245__ $$aImpact of Gate–Source Overlap on the Device/Circuit Analog Performance of Line TFETs
000864660 260__ $$aNew York, NY$$bIEEE$$c2019
000864660 3367_ $$2DRIVER$$aarticle
000864660 3367_ $$2DataCite$$aOutput Types/Journal article
000864660 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568010488_22201
000864660 3367_ $$2BibTeX$$aARTICLE
000864660 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864660 3367_ $$00$$2EndNote$$aJournal Article
000864660 520__ $$aThe gate–source overlap length ( ${L}_{{\text {OV}}}$ ) in the line tunneling FET (L-TFET) can be used as a design parameter to improve the analog circuit performance. In this paper, we investigate the drain current ( ${I}_{D}$ ) dependence on ${L}_{{\text {OV}}}$ , considering the electrostatics of the gate–source overlap region. It is observed that ${I}_{D}$ increases with ${L}_{{\text {OV}}}$ exhibiting a nonlinear behavior. This happens as the impact of the lateral electric field at the far end of the tunnel junction reduces, thereby reducing the tunneling rate. Based on our semiempirical physical ${I}_{D}$ – ${L}_{{\text {OV}}}$ model, a novel ${L}_{{\text {OV}}}$ variation-aware small signal model for L-TFET is also proposed. The output resistance and the gate–drain capacitance remain almost independent of ${L}_{{\text {OV}}}$ in the saturation regime. The gate–source capacitance and the transconductance linearly increase with ${L}_{{\text {OV}}}$ . A common source amplifier is demonstrated with ~2.4 times increase in the voltage gain when ${L}_{{\text {OV}}}$ is increased from 20 to 50 nm, with a penalty of ~10% in the bandwidth. We observe that it is not possible to achieve the gain similar to one obtained using 2.5 times increase in ${L}_{{\text {OV}}}$ even after increasing the device width five times. However, the bandwidth reduces 30% at such width owing to an increase in the gate capacitances.
000864660 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000864660 588__ $$aDataset connected to CrossRef
000864660 7001_ $$0P:(DE-HGF)0$$aSolanki, A. B.$$b1
000864660 7001_ $$0P:(DE-HGF)0$$aGlass, S.$$b2
000864660 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b3$$eCorresponding author
000864660 7001_ $$0P:(DE-HGF)0$$aAnand, Bulusu$$b4
000864660 773__ $$0PERI:(DE-600)2028088-9$$a10.1109/TED.2019.2927001$$gVol. 66, no. 9, p. 4081 - 4086$$n9$$p4081 - 4086$$tIEEE transactions on electron devices$$v66$$x1557-9646$$y2019
000864660 8564_ $$uhttps://juser.fz-juelich.de/record/864660/files/08766859.pdf$$yRestricted
000864660 8564_ $$uhttps://juser.fz-juelich.de/record/864660/files/08766859.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864660 909CO $$ooai:juser.fz-juelich.de:864660$$pVDB
000864660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000864660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b3$$kFZJ
000864660 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000864660 9141_ $$y2019
000864660 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T ELECTRON DEV : 2017
000864660 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864660 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864660 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864660 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864660 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864660 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864660 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864660 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864660 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000864660 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864660 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000864660 980__ $$ajournal
000864660 980__ $$aVDB
000864660 980__ $$aI:(DE-Juel1)PGI-9-20110106
000864660 980__ $$aUNRESTRICTED