001     864660
005     20210130002651.0
024 7 _ |a 10.1109/TED.2019.2927001
|2 doi
024 7 _ |a 0018-9383
|2 ISSN
024 7 _ |a 0096-2430
|2 ISSN
024 7 _ |a 0197-6370
|2 ISSN
024 7 _ |a 1557-9646
|2 ISSN
024 7 _ |a 2379-8653
|2 ISSN
024 7 _ |a 2379-8661
|2 ISSN
024 7 _ |a WOS:000482583200059
|2 WOS
037 _ _ |a FZJ-2019-04358
082 _ _ |a 620
100 1 _ |a Acharya, Abhishek
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Impact of Gate–Source Overlap on the Device/Circuit Analog Performance of Line TFETs
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568010488_22201
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The gate–source overlap length ( ${L}_{{\text {OV}}}$ ) in the line tunneling FET (L-TFET) can be used as a design parameter to improve the analog circuit performance. In this paper, we investigate the drain current ( ${I}_{D}$ ) dependence on ${L}_{{\text {OV}}}$ , considering the electrostatics of the gate–source overlap region. It is observed that ${I}_{D}$ increases with ${L}_{{\text {OV}}}$ exhibiting a nonlinear behavior. This happens as the impact of the lateral electric field at the far end of the tunnel junction reduces, thereby reducing the tunneling rate. Based on our semiempirical physical ${I}_{D}$ – ${L}_{{\text {OV}}}$ model, a novel ${L}_{{\text {OV}}}$ variation-aware small signal model for L-TFET is also proposed. The output resistance and the gate–drain capacitance remain almost independent of ${L}_{{\text {OV}}}$ in the saturation regime. The gate–source capacitance and the transconductance linearly increase with ${L}_{{\text {OV}}}$ . A common source amplifier is demonstrated with ~2.4 times increase in the voltage gain when ${L}_{{\text {OV}}}$ is increased from 20 to 50 nm, with a penalty of ~10% in the bandwidth. We observe that it is not possible to achieve the gain similar to one obtained using 2.5 times increase in ${L}_{{\text {OV}}}$ even after increasing the device width five times. However, the bandwidth reduces 30% at such width owing to an increase in the gate capacitances.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Solanki, A. B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Glass, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 3
|e Corresponding author
700 1 _ |a Anand, Bulusu
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1109/TED.2019.2927001
|g Vol. 66, no. 9, p. 4081 - 4086
|0 PERI:(DE-600)2028088-9
|n 9
|p 4081 - 4086
|t IEEE transactions on electron devices
|v 66
|y 2019
|x 1557-9646
856 4 _ |u https://juser.fz-juelich.de/record/864660/files/08766859.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/864660/files/08766859.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:864660
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T ELECTRON DEV : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21