000864664 001__ 864664
000864664 005__ 20230426083211.0
000864664 0247_ $$2doi$$a10.1103/PhysRevB.100.075142
000864664 0247_ $$2ISSN$$a0163-1829
000864664 0247_ $$2ISSN$$a0556-2805
000864664 0247_ $$2ISSN$$a1050-2947
000864664 0247_ $$2ISSN$$a1094-1622
000864664 0247_ $$2ISSN$$a1095-3795
000864664 0247_ $$2ISSN$$a1098-0121
000864664 0247_ $$2ISSN$$a1538-4489
000864664 0247_ $$2ISSN$$a1550-235X
000864664 0247_ $$2ISSN$$a2469-9950
000864664 0247_ $$2ISSN$$a2469-9969
000864664 0247_ $$2Handle$$a2128/22688
000864664 0247_ $$2altmetric$$aaltmetric:65553860
000864664 0247_ $$2WOS$$aWOS:000482086200001
000864664 037__ $$aFZJ-2019-04362
000864664 082__ $$a530
000864664 1001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b0$$eCorresponding author
000864664 245__ $$aTetrahedron integration method for strongly varying functions: Application to the G T self-energy
000864664 260__ $$aWoodbury, NY$$bInst.$$c2019
000864664 3367_ $$2DRIVER$$aarticle
000864664 3367_ $$2DataCite$$aOutput Types/Journal article
000864664 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572008544_32118
000864664 3367_ $$2BibTeX$$aARTICLE
000864664 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864664 3367_ $$00$$2EndNote$$aJournal Article
000864664 520__ $$aWe develop a tetrahedron method for the Brillouin-zone integration of expressions that vary a lot as a function of energy. The usual tetrahedron method replaces the continuous integral over the Brillouin zone by a weighted sum over a finite number of k points. The weight factors are determined under the assumption that the function to be integrated be linear inside each tetrahedron, so the method works best for functions that vary smoothly over the Brillouin zone. In this paper, we describe a new method that can deal with situations where this condition is not fulfilled. Instead of weight factors, we employ weight functions, defined as piecewise cubic polynomials over energy. Since these polynomials are analytic, any function, also strongly varying ones, can be integrated accurately and piecewise analytically. The method is applied to the evaluation of the GT self-energy using two techniques, analytic continuation and contour deformation. (We also describe a third technique, which is a hybrid of the two. An efficient algorithm for the dilogarithm needed for analytic continuation is formulated in Appendix.) The resulting spectral functions converge very quickly with respect to the k-point sampling.
000864664 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000864664 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000864664 536__ $$0G:(DE-Juel1)jpgi10_20181101$$aOptoelectronic properties of materials for photovoltaic and photonic applications (jpgi10_20181101)$$cjpgi10_20181101$$fOptoelectronic properties of materials for photovoltaic and photonic applications$$x2
000864664 542__ $$2Crossref$$i2019-08-21$$uhttps://link.aps.org/licenses/aps-default-license
000864664 588__ $$aDataset connected to CrossRef
000864664 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.075142$$bAmerican Physical Society (APS)$$d2019-08-21$$n7$$p075142$$tPhysical Review B$$v100$$x2469-9950$$y2019
000864664 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.075142$$gVol. 100, no. 7, p. 075142$$n7$$p075142$$tPhysical review / B$$v100$$x2469-9950$$y2019
000864664 8564_ $$uhttps://juser.fz-juelich.de/record/864664/files/PhysRevB.100.075142.pdf$$yOpenAccess
000864664 8564_ $$uhttps://juser.fz-juelich.de/record/864664/files/PhysRevB.100.075142.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864664 909CO $$ooai:juser.fz-juelich.de:864664$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b0$$kFZJ
000864664 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000864664 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000864664 9141_ $$y2019
000864664 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864664 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864664 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000864664 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000864664 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864664 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864664 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864664 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864664 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864664 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864664 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864664 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864664 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864664 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000864664 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000864664 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000864664 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000864664 980__ $$ajournal
000864664 980__ $$aVDB
000864664 980__ $$aI:(DE-Juel1)IAS-1-20090406
000864664 980__ $$aI:(DE-Juel1)PGI-1-20110106
000864664 980__ $$aI:(DE-82)080009_20140620
000864664 980__ $$aI:(DE-82)080012_20140620
000864664 980__ $$aUNRESTRICTED
000864664 9801_ $$aFullTexts
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01339661
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.13.5188
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.11.2109
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.139.A796
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.2389
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.100.045130
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.16223
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125102
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.74.1827
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(98)00174-X
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.37.10159
000864664 999C5 $$1F. Aryasetiawan$$2Crossref$$oF. Aryasetiawan Electronic Structure Calculations in Advances in Condensed Matter Science 2000$$tElectronic Structure Calculations in Advances in Condensed Matter Science$$y2000
000864664 999C5 $$2Crossref$$oPade approximants 1996$$tPade approximants$$y1996
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.13356
000864664 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-4-121-1