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Tetrahedron integration method for strongly varying functions: Application to the GT self-energy
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We develop a tetrahedron method for the Brillouin-zone integration of expressions that vary a lot as a function

of energy. The usual tetrahedron method replaces the continuous integral over the Brillouin zone by a weighted

sum over a finite number of k points. The weight factors are determined under the assumption that the function

to be integrated be linear inside each tetrahedron, so the method works best for functions that vary smoothly over

the Brillouin zone. In this paper, we describe a new method that can deal with situations where this condition

is not fulfilled. Instead of weight factors, we employ weight functions, defined as piecewise cubic polynomials

over energy. Since these polynomials are analytic, any function, also strongly varying ones, can be integrated

accurately and piecewise analytically. The method is applied to the evaluation of the GT self-energy using

two techniques, analytic continuation and contour deformation. (We also describe a third technique, which is a

hybrid of the two. An efficient algorithm for the dilogarithm needed for analytic continuation is formulated in

Appendix.) The resulting spectral functions converge very quickly with respect to the k-point sampling.
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I. INTRODUCTION

In condensed-matter physics, the translational symmetry of

crystalline systems leads to the existence of vectorial quantum

numbers, the Bloch vectors [1], defined to lie in the Brillouin

zone, the first reciprocal unit cell. If an observable commutes

with the lattice translations, its representation is diagonal in k,

as is the case with the single-particle Hamiltonian. As a result,

its eigenfunctions ϕσ
kn(r) and eigenvalues ǫσ

kn can be classified

with k as a quantum number, in addition to the spin quantum

number σ and the band index n.

Some quantities of interest require a summation over these

eigenstates, which thus involves a summation over the spin

and band index, as well as an integration over k. This is be-

cause, in an infinite crystal, there are uncountably many Bloch

vectors, k is a continuous variable. The simplest approach to

carry out the k integration is to sample the Brillouin zone by

a finite k mesh, for example, a Monkhort-Pack mesh [2], and

simply sum over the respective k points. The finer the k mesh,

the better the sum approaches the integral. However, for some

quantities the size of the k mesh required to achieve sufficient

convergence can become exceedingly large.

This is already clear for the relatively simple task of inte-

grating over the energy eigenvalues to obtain the total energy

of the single-particle system. This integration can be written

as a sum over all states, and the corresponding k integrand

would be f σ
knǫ

σ
kn with the occupation number f σ

kn, which, in

the zero temperature limit, changes abruptly from 1 to 0 at the

Fermi energy. So, if, for some k, the single-particle energy

ǫσ
nk is slightly below the Fermi energy, this state would be

included completely in the sum 1
N

∑

k f σ
knǫ

σ
kn, whereas, if k

is chosen only slightly differently, ǫσ
kn might happen to lie just

above the Fermi energy, and the state would be excluded. It is

clear that some kind of interpolation scheme that samples the

Fermi surface to a certain degree would be helpful in this case.

The tetrahedron method [3] provides such a three-

dimensional interpolation in reciprocal space. It divides

the Brillouin-zone volume into 6N tetrahedra, where N is

the number of k points (preferably) of an equidistant set

of k points. Let us assume that we know the values of a

k-dependent function at all corners of a given tetrahedron.

Then there is a unique linear interpolation of the function

inside the tetrahedron, which, since the tetrahedra fill up the

whole Brillouin zone, defines the function everywhere in

reciprocal space. For example, the energy eigenvalues ǫσ
kn can

be interpolated in this way, allowing the Fermi surface to be

sampled accurately.

Coming back to the example above, this enables an an-

alytic integration of f σ
knǫ

σ
kn, yielding the exact integral (of

the linearized integrand) in the form of a weighted sum
1
N

∑

k w
σ
knǫ

σ
kn. Obviously, the occupation numbers f σ

kn(= 1 or

0) have been replaced by weight factors w
σ
kn. If an occupied

(unoccupied) state kn is far away from the Fermi energy (to

be more precise, if none of the adjacent tetrahedra is cut

by the Fermi energy), then w
σ
kn = 1 (0), otherwise w

σ
kn is

a number between 0 and 1. It does not change abruptly at

the Fermi energy, which solves the aforementioned problem.

Since the integration is a linear operation, the weight factors

w
σ
kn turn out to be independent of the function to be integrated

and can be pre-calculated in a computer code and stored in

memory. With these weight factors, arbitrary functions can

be integrated efficiently provided that they vary sufficiently

smoothly in reciprocal space, so that the linearization inside

the tetrahedra is a reasonable interpolation.1

1We have to remark at this point that there are, of course, other

k integration methods. For example, when allowing finite tempera-

tures, one can employ the Fermi-Dirac distribution function for f σ
kn,

which changes gradually from 1 to 0 at ǫF (for increasing energy).

However, this approach would still not represent a viable solution for

the type of integrals with strongly varying function as those discussed

in the present paper. Besides, it also does not attempt to interpolate
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This latter condition is, however, not always fulfilled, in

particular, by functions that describe the coupling to strong

many-body resonances. For example, the evaluation of elec-

tronic self-energies (GW [4] or GT approximation [5,6])

require a k (and thus an energy) integration of an effective

interaction potential [W (ǫ) or T (ǫ)], which can vary a lot as

a function of energy. This is true, in particular, for the mag-

netic T matrix used in the GT self-energy, which describes

renormalization effects due to the scattering of electrons with

magnons. Therefore we use the GT self-energy as a practical

example in this paper.

The integral to be evaluated can be written in the following

generic form:

∫

ǫk<ǫF

Fk(ǫk )d3k , (1)

where the band and spin indices are dropped for simplicity

and Fk(ǫ) is an energy-dependent function that also depends

on the k vector. It is important to note that k is assumed

to be continuous by virtue of the tetrahedron interpolation.

Although the integrals derived in Sec. III will have different

integration bounds in general (including lower bounds), we

assume, for the sake of argument, the Fermi energy ǫF to be

the upper bound until Sec. III.

From a pragmatic point of view, it seems natural to inter-

pret Fk(ǫk ) simply as a k dependent function just like ǫσ
kn and

integrate it in the same way as above, which would give the

weighted sum 1
N

∑

k wkFk(ǫk ). However, since Tk(ǫ) is as-

sumed to vary a lot in ǫ, the above condition for standard tetra-

hedron integration (smooth integrand) would be violated. Fur-

thermore, the GT self-energy is a frequency-dependent func-

tion. To take this into account, expression (1) would have to

be generalized to �(ω) =
∫

ǫk<ǫF
Fk(ω − ǫk )d3k, and the stan-

dard method would approximate �(ω) ≈ 1
N

∑

k wkFk(ω −
ǫk ) (omitting a normalization factor for simplicity). The

strong variation of Fk(ǫ) would thus directly translate to an

equally strong and unphysical variation of the self-energy

�(ω). As a solution, we introduce a different integration

method, which leads to weight functions wk(ǫ) in place of

the scalar weight factors wk. The k integral is then approx-

imated by 1
N

∑

k

∫ ǫF

−∞ wk(ǫ)Fk(ǫ)dǫ [or, including the fre-

quency dependence, �(ω) = 1
N

∑

k

∫ ǫF

−∞ wk(ǫ)Fk(ω − ǫ)dǫ].

We demonstrate that the resulting self-energy has a very

smooth and physical behavior even when Fk(ǫ) exhibits a lot

of structure, which, in the case of the GT self-energy, is due

to the presence of delta-function-like spin-wave peaks in the

T matrix.

The paper is organized as follows. Section II recapitulates

the standard tetrahedron method and then introduces the new

method. In Sec. III, the new method is applied to the GT self-

energy. The implementation requires also the derivation of

an efficient algorithm for the dilogarithm function, discussed

in Appendix B. Section V discusses illustrative results. In

Sec. VI, we draw the main conclusions.

the three-dimensional dispersion of the electronic bands, unlike the

tetrahedron method.
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FIG. 1. Parallelepiped (cube) formed by eight adjacent k points

(1–8) for the case of a simple cubic lattice. The six tetrahedra could

have the corners (1236), (5736), (1536), (2436), (4836), and (7836).

They all share the diagonal (36) of the parallelepiped (black dashed

line), which can be chosen to be the one that is shortest for the given

Bravais lattice. The other edges of the first two tetrahedra are shown

as red and blue lines, respectively. The devision into tetrahedra is not

unique.

II. TETRAHEDRON METHOD

In Sec. II A, we introduce the notation and recapitulate the

standard tetrahedron method for the k integration over the

Brillouin zone. This will set the stage for the introduction of

the new method in Sec. II B.

A. Standard method

The tetrahedron method is a technique to interpolate arbi-

trary functions defined on a grid in k space in a geometrical

way. It relies on a division of the Brillouin zone into 6N

tetrahedra. Although strictly not necessary, the N k points

are assumed to form an equidistant grid in the following for

simplicity. The Brillouin zone can then be thought of as being

composed of N parallelepipeds, each of which is divided into

six tetrahedra in such a way that the eight k points forming the

parallelepiped are also the tetrahedron corners. An example is

shown in Fig. 1. The division into tetrahedra is not unique. It

can, for example, be chosen in such a way that the edges of the

tetrahedra have minimal lengths for the given geometry of the

Bravais lattice, to make the tetrahedra as compact as possible.

Each tetrahedron corner coincides with one of the k points.

A tetrahedron has four corners ki (i = 1, 2, 3, 4), allowing a

linear interpolation of a function Fk inside the tetrahedron

if the function values Fki
at the four corners are known.2

This can be used to define the function continuously in the

whole Brillouin zone and, using this interpolation, to evaluate

a Brillouin-zone integral of the function analytically. The band

energies are interpolated in the same way as Fk, which enables

a sampling of the Fermi surface by connected triangles and

quadrangles. (The isoenergy surfaces in the tetrahedra have

the form of triangles and quadrangles.)

2Throughout this paper, we use the notation Fk for values of F at

discrete k points but also for a continuous function F (k). It should

always be clear from the context how Fk is understood.
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In a first step, we assume that ǫk < ǫF in the whole Bril-

louin zone. Then, a general k integral can be written as a sum

over all tetrahedron contributions t

�

8π3

∫

Fkd3k =
�

8π3

∑

t

∫

t

Fkd3k

≈
�

8π3

∑

t

∫ ∞

−∞

F

bt

St (F )dF, (2)

where � is the unit-cell volume and 8π3/� the volume of the

Brillouin zone. So, the left-hand side would be 1 if Fk ≡ 1. In

the last step, we have assumed Fk to be linearly approximated

inside each tetrahedron (with corners k1, k2, k3, k4)

Fk ≈ F1 + b(k − k1) , (3)

where b is the (constant) gradient ∇kFk, S(F ) is the area

of the plane of constant F inside the tetrahedron, and Fi ≡
Fki

. The index t is dropped for simplicity. Defining three

vectors ri (i = 2, 3, 4) with ri(k j − k1) = δi j , one can write

b =
∑4

i=2 (Fi − F1)ri. Let the vectors ki be ordered such that

F1 � F2 � F3 � F4. If F is between F1 and F2 and k the point

on the plane S(F ) that has the minimal distance from k1, then

k − k1 is perpendicular to the plane and collinear to b because

of Eq. (3), hence k − k1 = αb and F − F1 = αb2. The partial

volume of the tetrahedron defined by Fk � F is

(F − F1)3

(F2 − F1)(F3 − F1)(F4 − F1)
v = 1

3
|k − k1|S(F ) (4)

with the tetrahedron volume v. This leads to S(F ) = a1(F )

with

a1(F ) = 3vb
(F − F1)2

(F2 − F1)(F3 − F1)(F4 − F1)
(5)

for F1 � F � F2. Similarly, we find S(F ) = a2(F ) + a3(F )

for F2 < F < F3 and S(F ) = a4(F ) for F3 � F � F4 with

a2(F ) = 3vb
(F − F1)(F4 − F )

(F3 − F1)(F4 − F1)(F4 − F2)
, (6)

a3(F ) = 3vb
(F − F2)(F3 − F )

(F3 − F2)(F4 − F2)(F3 − F1)
, (7)

a4(F ) = 3vb
(F − F4)2

(F4 − F1)(F4 − F2)(F4 − F3)
, (8)

see Fig. 2. The integral of Eq. (2) can now be evaluated and

yields
∫ ∞

−∞

F

b
S(F )dF =

v

4
(F1 + F2 + F3 + F4) , (9)

which is nothing but the arithmetic average multiplied by the

tetrahedron volume. With 6Nv = 8π3/�, the contribution of

a given tetrahedron is

�

8π3

∫ ∞

−∞

F

b
S(F )dF =

1

24N
(F1 + F2 + F3 + F4) . (10)

Since each k point is the corner of six tetrahedra, we finally get
�

8π3

∫

Fkd3k ≈ 1
N

∑

k wkF (k) with the trivial weight factors

wk ≡ 1. Obviously, if ǫk > ǫF in the whole Brillouin zone,

then wk ≡ 0.
We now consider the case that the energy ǫF falls into the

tetrahedron, i.e., ǫ1 < ǫF < ǫ4 with ǫi = ǫki
. Then, the volume

21
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FIG. 2. Plane of constant F in a tetrahedron for the case F1 <

F2 < F < F3 < F4. It is composed of two triangles. The corners of

the first [Eq. (6)] are enumerated (blue numbers). In the other two

cases (F1 � F � F2 and F3 � F � F4), the plane of constant F is a

single triangle. The energies ǫi are interpolated in the same way.

defined by ǫk < ǫF is again a tetrahedron if ǫF � ǫ2 or a
combination of three tetrahedra if ǫ2 < ǫF < ǫ4. The corners
of these new tetrahedra are obtained according to Eq. (3).3

The integration over them is performed in the same way as
above. As a consequence, the integral can be written again as
a weighted sum over the k points

�

8π3

∫

ǫk<ǫF

Fkd3k ≈
1

N

∑

k

wkFk . (11)

The weight factors wk are independent of the function Fk. But
now, since the condition ǫk < ǫF is not fulfilled in the whole
Brillouin zone, the weights are not all identical. If ǫF falls into
one of the tetrahedra of which k is a corner, the weight wk

will be between 0 and 1. We note that one can go beyond
the linear approximation by taking into account quadratic
corrections [7] in the tetrahedron method. However, these
corrections, too, rely on a smooth integrand as a condition and
are, therefore, insufficient for the present purpose.

B. New method

In this section, we consider the integral

�

8π3

∫

ǫk<ǫF

Fk(ǫk )d3k , (12)

where Fk(ǫ) is a strongly varying function in ǫ. The integrand

depends on k implicitly through ǫk but also through an explicit

k dependence of the function F itself. The latter k dependence

and also the one of ǫk is assumed to be sufficiently smooth

over the Brillouin zone. We assume that, for each k point

(of the k-point set), the function Fk(ǫ) is known on a dense

energy mesh (or as an analytic function, e.g., a Padé approx-

imant). So, the explicit k dependence is discrete, while the

energy dependence can be regarded as continuous. We note in

passing that the same method introduced here can be used for

the more general integral
∫

ǫk<ǫF
Fk( fk )d3k with an arbitrary

(but smoothly varying) function fk. For clarity, we restrict

ourselves to the other simpler case, which is also the relevant

one for the GT self-energy.

3In the case ǫF < ǫ2, for example, the new corners would

be at (k1, k′
i, i = 2, 3, 4) with k′

i − k1 = ǫF−ǫ1

ǫi−ǫ1
(ki − k1) as ob-

tained from k′
i − k1 = β(ki − k1) (0 < β < 1) and ǫF − ǫ1 =

b(k′
i − k1) = βb(ki − k1) = β(ǫi − ǫ1).
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The criterion of a “sufficiently smooth k dependence of
the function Fk(ǫ)” requires some explanatory words, since
we talk here about a function of functions: for each k (con-
tinuously defined), there is a function Fk(ǫ) of ǫ. Firstly, the
criterion does not mean that Fk(ǫ) depends weakly on k for
any fixed ǫ because this would be in conflict with allowing
Fk(ǫ) to be a strongly varying function in ǫ.4 It might best
be explained by picturing plots of Fk(ǫ) for several slightly
different k points (e.g., along a direction in k space). These
plots should show a smooth transition from one k point to the
next, which would allow for peaks to shift, to increase and de-
crease, for features to form and disappear etc. As a more math-
ematical definition, one could demand integrals of the form
∫

w(ǫ)Fk(ǫ)dǫ to show a weak k dependence, where w(ǫ) is
a weight function, e.g., of the type we are going to derive, that
is nonzero in a finite energy range with a smooth switching-on
and -off behavior at the boundaries. In this sense, the criterion
of a “sufficiently smooth k dependence of the function Fk(ǫ)”
is a rather weak one, which just excludes unphysical patholo-
gies that could not be captured with a finite k-point set.

As already mentioned in the introduction, we could for-
mally interpret Fk(ǫk ) as the function Fk of Eq. (11) and just
use the weighted sum with the precalculated weight factors,
but, due to the assumed strong variation of Fk(ǫ), such an ap-
proach would be very inaccurate. Therefore, we formulate an
alternative tetrahedron integration method, which will allow
the strong variations of Fk(ǫ) to be smoothly integrated over.

To this end, we rewrite the integral as an integral over ǫ

similarly to Eq. (2)

�

8π3

∫

ǫk<ǫF

Fk(ǫk )d3k

≈
�

8π3

∑

t

∫ ǫF

−∞

1

bt

[∫

St (ǫ)

Fk(ǫ)d2k

]

dǫ . (13)

The k dependence of F forces us to keep the explicit integral

over the isoenergy surface St (ǫ), which forms a triangle or a

quadrangle (i.e., two triangles, see Fig. 2). We now treat Fk(ǫ)

as if it were a smoothly varying scalar function Fk, ignoring

the ǫ dependence for a while. Then, the integral over a triangle

can be evaluated by linearization of Fk, which, by analogy to

Eq. (9), yields the arithmetic average

∫

a

Fkd2k =
a

3
[F ′

1 + F ′
2 + F ′

3 ] (14)

with the triangle area a and the triangle corners k′
1, k′

2, and

k′
3 with F ′

i = Fk′
i
. We first relate the function values F ′

i = Fk′
i

at the triangle corners to the ones at the tetrahedron corners,

Fi ≡ Fki
. Any k′

i lies on one of the edges of the tetrahedron

(see Fig. 2). So, using linearization for Fk and ǫk, we have

F ′
i = [(ǫ − ǫk )Fj + (ǫ j − ǫ)Fk]/(ǫ j − ǫk ) if k′

i is on the edge

connecting k j and kk . Now, we reintroduce the ǫ dependence

simply by the substitutions Fi → Fi(ǫ) and F ′
i → F ′

i (ǫ) in

Eq. (14), thus exploiting the assumed weak dependence of

Fk(ǫ) on k. And we also substitute a by the corresponding

formula from Eqs. (5)–(8) (with ǫ instead of F ).

Now, we have all ingredients to rewrite the right-hand side

of Eq. (13). Obviously, the functions Fi(ǫ) appear linearly, so

we can factor them out and write

�

8π3

1

bt

∫

St (ǫ)

Fk(ǫ)d2k ≈
∑

i

wi(ǫ)Fi(ǫ) , (15)

with the energy-dependent tetrahedron weight functions

w1(ǫ) =
1

6















(ǫ−ǫ1 )2

(ǫ2−ǫ1 )(ǫ3−ǫ1 )(ǫ4−ǫ1 )

(

ǫ2−ǫ

ǫ2−ǫ1
+ ǫ3−ǫ

ǫ3−ǫ1
+ ǫ4−ǫ

ǫ4−ǫ1

)

for ǫ1 � ǫ � ǫ2

(ǫ−ǫ1 )(ǫ4−ǫ)

(ǫ3−ǫ1 )(ǫ4−ǫ1 )(ǫ4−ǫ2 )

(

ǫ3−ǫ

ǫ3−ǫ1
+ ǫ4−ǫ

ǫ4−ǫ1

)

+ (ǫ−ǫ2 )(ǫ3−ǫ)

(ǫ3−ǫ2 )(ǫ4−ǫ2 )(ǫ3−ǫ1 )
ǫ3−ǫ

ǫ3−ǫ1
for ǫ2 < ǫ < ǫ3,

(ǫ−ǫ4 )2

(ǫ4−ǫ1 )(ǫ4−ǫ2 )(ǫ4−ǫ3 )
ǫ4−ǫ

ǫ4−ǫ1
for ǫ3 � ǫ � ǫ4

(16)

w2(ǫ) =
1

6















(ǫ−ǫ1 )2

(ǫ2−ǫ1 )(ǫ3−ǫ1 )(ǫ4−ǫ1 )
ǫ−ǫ1

ǫ2−ǫ1
for ǫ1 � ǫ � ǫ2

(ǫ−ǫ1 )(ǫ4−ǫ)

(ǫ3−ǫ1 )(ǫ4−ǫ1 )(ǫ4−ǫ2 )
ǫ4−ǫ

ǫ4−ǫ2
+ (ǫ−ǫ2 )(ǫ3−ǫ)

(ǫ3−ǫ2 )(ǫ4−ǫ2 )(ǫ3−ǫ1 )

(

ǫ3−ǫ

ǫ3−ǫ2
+ ǫ4−ǫ

ǫ4−ǫ2

)

for ǫ2 < ǫ < ǫ3,

(ǫ−ǫ4 )2

(ǫ4−ǫ1 )(ǫ4−ǫ2 )(ǫ4−ǫ3 )
ǫ4−ǫ

ǫ4−ǫ2
for ǫ3 � ǫ � ǫ4

(17)

w3(ǫ) =
1

6















(ǫ−ǫ1 )2

(ǫ2−ǫ1 )(ǫ3−ǫ1 )(ǫ4−ǫ1 )
ǫ−ǫ1

ǫ3−ǫ1
for ǫ1 � ǫ � ǫ2

(ǫ−ǫ1 )(ǫ4−ǫ)

(ǫ3−ǫ1 )(ǫ4−ǫ1 )(ǫ4−ǫ2 )
ǫ−ǫ1

ǫ3−ǫ1
+ (ǫ−ǫ2 )(ǫ3−ǫ)

(ǫ3−ǫ2 )(ǫ4−ǫ2 )(ǫ3−ǫ1 )

(

ǫ−ǫ1

ǫ3−ǫ1
+ ǫ−ǫ2

ǫ3−ǫ2

)

for ǫ2 < ǫ < ǫ3,

(ǫ−ǫ4 )2

(ǫ4−ǫ1 )(ǫ4−ǫ2 )(ǫ4−ǫ3 )
ǫ4−ǫ

ǫ4−ǫ3
for ǫ3 � ǫ � ǫ4

(18)

w4(ǫ) =
1

6















(ǫ−ǫ1 )2

(ǫ2−ǫ1 )(ǫ3−ǫ1 )(ǫ4−ǫ1 )
ǫ−ǫ1

ǫ4−ǫ1
for ǫ1 � ǫ � ǫ2

(ǫ−ǫ1 )(ǫ4−ǫ)

(ǫ3−ǫ1 )(ǫ4−ǫ1 )(ǫ4−ǫ2 )

(

ǫ−ǫ1

ǫ4−ǫ1
+ ǫ−ǫ2

ǫ4−ǫ2

)

+ (ǫ−ǫ2 )(ǫ3−ǫ)

(ǫ3−ǫ2 )(ǫ4−ǫ2 )(ǫ3−ǫ1 )
ǫ−ǫ2

ǫ4−ǫ2
for ǫ2 < ǫ < ǫ3,

(ǫ−ǫ4 )2

(ǫ4−ǫ1 )(ǫ4−ǫ2 )(ǫ4−ǫ3 )

(

ǫ−ǫ1

ǫ4−ǫ1
+ ǫ−ǫ2

ǫ4−ǫ2
+ ǫ−ǫ3

ǫ4−ǫ3

)

for ǫ3 � ǫ � ǫ4

(19)

and wi(ǫ) = 0 elsewhere. The weight functions are independent of Fk(ǫ) and piecewise cubic polynomials over ǫ. Following the

tetrahedron construction, these weight functions are assigned to the respective k points. Each k point gets contributions from

all adjacent (six) tetrahedra, which are summed to an effective weight function wk(ǫ), now indexed with k. Equation (13) can

4As a trivial example, consider k to be a one-dimensional parameter and suppose a weak functional k dependence of the form Fk (ǫ) =
F (ǫ + k). Then the function k �→ Fk (ǫ) would show the same strong variations as ǫ �→ Fk (ǫ).
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then be written as

�

8π3

∫

ǫk<ǫF

Fk(ǫk )d3k ≈
1

N

∑

k

∫ ǫF

−∞
wk(ǫ)Fk(ǫ)dǫ , (20)

which is the desired result. To keep the polynomial coeffi-

cients numerically small, it is recommendable to define the

polynomials with respect to the relative value ǫ − ǫk instead

of the absolute value ǫ. Note that the simple k summation

(discussed in the introduction) is recovered if we set wk(ǫ) =
δ(ǫ − ǫk ).

Each weight function wk(ǫ) integrates to 1. Remember

that, in the standard method, we have wk = 1 if neither of

the tetrahedra adjacent to k are cut by the Fermi energy ǫF,

and otherwise 0 < wk < 1. In the present case, the functions

wk(ǫ) are independent of ǫF. The energy ǫF is, instead, taken

into account as the upper integration bound. In this sense, the

weight functions are more general than the weight factors of

Sec. II A because they do not depend on ǫF, unlike wk. This

will be helpful in Sec. III, where the upper bound will take

the role of a variable quantity dependent on the argument of

the self-energy. In addition to ǫF, we will then also have to

introduce a lower integration bound.

If Fk(ǫ) is defined on an energy mesh {ǫν}, the inte-

grations can be performed piecewise analytically assuming

linear interpolation between the mesh points, since the wk(ǫ)

are just cubic polynomials. Also, products of polynomials

with more complex functions [we will later need to consider

multiplication with the complex logarithm] can be performed

analytically.

To validate Eqs. (16)–(19), it is interesting to consider

slowly varying functions Fi(ǫ), in which case the results

of Sec. II A should be recovered. If Fi(ǫ) is constant, each

tetrahedron corner (i = 1, 2, 3, 4) contributes
∫ ǫ4

ǫ1

wi(ǫ)dǫ =
1

24
. (21)

So, each corner “represents” one fourth of the tetrahedron

(which takes up one sixth of the parallelepiped, so 4 × 6 =
24), as expected from Eq. (10). We can say that the contri-

bution of a tetrahedron corner is “spread” over the interval

[ǫ1, ǫ4]. Using the (linear) function Fi(ǫ) = ǫ, we would get

∫ ǫ4

ǫ1

ǫwi(ǫ)dǫ =
1

120



ǫi +
4

∑

j=1

ǫ j



 . (22)

The contributions of the tetrahedron corners to the total in-

tegral are not equal. The energy value at the ith corner gets

twice as much weight (1/60) as the other values (1/120).

This seems to contradict Eq. (10) of the standard method,

in which all weights are identically 1/24. But it should be

remembered that Eq. (10) already represents the integration

over the whole tetrahedron. In the present case, this would

amount to summing over all corners, which then yields the

expected result

4
∑

i=1

∫ ǫ4

ǫ1

ǫwi(ǫ)dǫ =
1

24

4
∑

i=1

ǫi , (23)

i.e., each tetrahedron corner contributes the same as in the

standard method.

It can be shown that if ǫ1 < ǫ2 < ǫ3 < ǫ4, wi(ǫ) and the

derivatives w
′
i(ǫ) are continuous, w

′′
i (ǫ) is continuous except

at ǫi, and w
′′′
i (ǫ) is discontinuous. (Note that wi(ǫ) = 0 if

ǫ � ǫ1 or ǫ � ǫ4.) If ǫi = ǫi+1, then w
′
i(ǫ) and w

′
i+1(ǫ) are

discontinuous at ǫi. If ǫi = ǫi+1 = ǫi+2, then wi(ǫ), wi+1(ǫ),

and wi+2(ǫ) are discontinuous at ǫi. Figure 3 shows wi(ǫ)

and the derivatives w
(ν)
2 (ǫ) (scaled by 24) for the case ǫi ≡ i.

Due to symmetry, w1(ǫ) = w4(5 − ǫ) and w2(ǫ) = w3(5 −
ǫ). The curves wi(ǫ) are very smooth, discontinuities appear

only in the second derivative.

III. SELF-ENERGY

In this section, we discuss the evaluation of the electronic

self-energy with the help of the tetrahedron method discussed

before. We use here a generic form of the self-energy

�(r, r′; ω) =
1

2π i

∫ ∞

−∞
G(r, r′; ω + ω′)T (r, r′; −ω′)dω′ ,

(24)

where G is the Green function and T an effective interaction

potential. The latter can be the T matrix but also −W , the

negative of the screened interaction W , used in the GW

approximation [4]. The spin dependence is omitted for sim-

plicity, as it is irrelevant for the present purpose. (In the case

of GW, � and G would have the same and W no spin index.

In the case of magnetic GT, � and G would have opposite

indices, σ and σ ′ = −σ , and the T matrix the index pair σσ ′.)
After insertion of the Lehmann representation of the Green

function

G(r, r′; ω) =
�

8π3

∫

d3k
∑

n

ϕkn(r)ϕ∗
kn(r′)

ω − ǫnk + iη sgn(ǫkn − ǫF )
,

(25)

where η is a positive infinitesimal, the expectation value of the

self-energy becomes

〈ϕqm|�(ω)|ϕqm〉 =
1

2π i

�

8π3

∫

d3k
∑

n

∫ ∞

−∞
dω′

×
Tqm,kn(−ω′)

ω + ω′ − ǫkn + iη sgn(ǫkn − ǫF )
.

(26)

The quantity Tqm,kn(ω) can be quite complex. In the case

of magnetic GT , it is the matrix element of the four-point

T matrix [T σσ ′
(r1, r2, r3, r4; ω)] with respect to the wave-

function pairs ϕσ ′

kn(r1)ϕσ ∗
qm (r2) and ϕσ ′∗

kn (r3)ϕσ
qm(r4) [6]. In the

case of GW , it is the matrix element of the two-point screened

interaction W [W (r1, r2; ω)] with respect to the products

ϕkn(r1)ϕ∗
qm(r1) and ϕ∗

kn(r2)ϕqm(r2) [8]. For the present pur-

pose, we only need to know that it is defined for each k

point of the k mesh as a function of ω. For simplicity, we

restrict ourselves to the diagonal elements [Eq. (26)]. The

generalization to off-diagonal elements 〈ϕqm|�(ω)|ϕqm′〉 is

straightforward.

We discuss two ways of evaluating Eq. (26), analytic con-

tinuation (AC) [9,10] and contour deformation (CD) [11,12].

(The acronyms will refer to the methods in the following,

not to the mathematical concepts). In the former approach,

one employs a formulation on the imaginary frequency axis
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FIG. 3. (Left) The weight functions wi(ǫ) for ǫi = i; (right) the derivatives w
(ν )
2 (ǫ) (ν = 0, 1, 2, 3); all functions are scaled by 24, so the

area under each curve (left) is 1.

(ω → iω and ω′ → iω′), which requires a subsequent analytic

continuation of the self-energy to the real frequency axis,

often carried out with Padé approximants [13]. In the second

approach (CD), the frequency convolution of Eq. (26) is

performed explicitly, which yields the self-energy directly

for real frequencies, thus eliminating the need for the often

ill-conditioned Padé extrapolation used in AC. We discuss

both techniques in the following, in particular, in relation to

the integration method introduced in Sec. II B.

A. Contour deformation

The CD method relies on the interpretation of the fre-

quency convolution in Eq. (24) as an integral along a closed

integration contour, namely from −∞ to ∞ along the real

axis, and then back to −∞ along a semiarc of infinite radius

over the positive complex half-plane. The integral along the

semiarc is zero because the integrand behaves as ∝ ω−2.

According to the residue theorem, deforming this contour

path does not change the integrated value as long as the

new contour encloses the same poles [of G(ω + ω′) and

T (−ω′)]. We can exploit this freedom to define an integration

path that avoids, as best as possible, the strong variation of

T (−ω′) along the real frequency axis. Such a path is shown

in Fig. 4. The integral from −i∞ to i∞ along the imaginary

axis gives a nonvanishing contribution. Between 0 and iη

(in the case ω < ǫF ) we have to take a rectangular detour

(of infinitesimal height iη) to enclose the poles coming from

G(ω + ω′). Fortunately, poles from T (−ω′) do not fall inside

the rectangle, so that we can integrate around it analytically

by summing up the residues coming from the Green-function

poles. The integration path can then be regarded as consisting

of two parts, an integration along the imaginary axis (from

−i∞ to i∞) and the integration around the rectangle. The case

ω > ǫF can be treated analogously. The resulting self-energy

expression reads

〈ϕqm|�(ω)|ϕqm〉 =
1

2π

�

8π3

∑

n

∫

d3k

∫ ∞

−∞
dω′ Tqm,kn(−iω′)

ω + iω′ − ǫkn

+
�

8π3

{
∑

n

∫

ω<ǫkn<ǫF
Tqm,kn(ω − ǫkn) d3k for ω < ǫF

−
∑

n

∫

ǫF<ǫkn<ω
Tqm,kn(ω − ǫkn) d3k for ω > ǫF

, (27)

where the n summation in the first term is over infinitely many

bands, while the one of the second term (the “rectangle”) is

finite by virtue of the k integration bounds.

The function Tqm,kn is given on a mesh {iωµ} along

the imaginary axis. Due to the symmetry Tqm,kn(−iω) =
T ∗

qm,kn(iω) [or Wqm,kn(−iω) = Wqm,kn(iω)], the mesh needs

to include only positive ωµ. To evaluate the integral of the

first term, it is recommendable to interpolate the numerator in

such a way that an analytic frequency integration is possible,

for example, using Padé approximants [also see Eqs. (28)

and (29)]. The result has the form Fk of Sec. II A or, if

written as a function of energy, Fk(ǫk ) of Sec. II B. Along

the imaginary axis, the function is usually smooth enough

to be dealt with adequately using the standard method, but,

as we will show later, treating the first term with the new

method leads to more accurate results and, as a consequence,

to a much better k-point convergence. The respective integrals

can be evaluated with elementary functions. The derivation is

however quite involved. We discuss it in detail in Appendix A.

The problematic term, however, and the one that forced

us to develop the new integration method, is the second

term because its integrand is a strongly varying function.

Using the standard method with Tqm,kn(ω − ǫkn) for Fk in

the weighted sum, Eq. (11) with suitably adjusted integration
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iη

ω < ε
F

−ωε
F

−ωε
F

F
ω > ε

FIG. 4. The red lines show the integration contour used in the

contour deformation technique to evaluate Eq. (24). The dashed lines

(quarter arcs of infinite radius) do not contribute to the integral. The

circles and crosses represent the poles of G(ω + ω′) and T (−ω′),

respectively. By inspection, the residues included in the integration

path from −∞ to −i∞, then to i∞, and back to −∞ are the same as

in a contour from −∞ to ∞, and then back to −∞ along a semiarc

of infinite radius over the positive complex half-plane.

bounds, would therefore lead to an equally strongly varying

self-energy. Such a self-energy is unphysical because the k

integration is expected to integrate over the strong variations

of Tqm,kn(ω) in a smooth way and should thus produce a well

behaved self-energy. Therefore we employ the new integration

method. This can be done straightforwardly by interpreting

Tqm,kn(ω − ǫkn) as the function Fk(ǫk ) of Eq. (20), again with

suitably adjusted integration bounds as a trivial generalization

of the equation. Let us suppose that Tqm,kn(ω) is given on a

mesh {ων} along the real frequency axis. With an interpolation

between the mesh points such as linear or spline interpolation,

the ǫ integrand becomes a piecewise defined polynomial

allowing a straightforward analytic integration. The integral

pieces consist of the combined intervals of {ων} and those

of the weight functions wk(ǫ), see Sec. II B. The simple

linear interpolation of Tqm,kn(ω) has proven to be sufficiently

accurate in our calculations.

The CD method is computationally more demanding than

AC, mostly because it requires the effective interaction po-

tential T to be evaluated on a mesh on the real frequency

axis in addition to the one on the imaginary axis. There

is an alternative that can be understood as a hybrid of

the two methods: It is based on Eq. (27) but employs

an analytic continuation of Tqm,kn from the imaginary to

the real axis, needed for the “rectangle” term. So, Tqm,kn

needs to be known only on the imaginary axis, like in

the AC method. It will turn out in Sec. V that the hybrid

method is considerably faster than but similarly accurate as

the standard CD approach and more stable than the AC

method.

Thiele’s continued fraction formula [13] (indices omitted

for simplicity)

T (−z) =
1

c1 + z−iω1

c2+
z−iω2
c3+...

(28)

with complex parameters cµ enables an analytic continuation

from the imaginary axis to the complex plane z ∈ C with

ℑz � 0 (ℑz > 0) for ℜz � 0 (ℜz < 0).5 In Eq. (28), we

have employed the negative argument −z on the left because

of the corresponding sign in the argument of T [−(ǫ − ω)]

in Eq. (27). The complex parameters cµ are determined

from the known function values T (−iωµ). Determining the

coefficients, instead, from T (iωµ) = T ∗(−iωµ) [W (iωµ) =
W (−iωµ)] yields a second approximant that completes the

definition with the complementary domain of the complex

plane. (This piecewise definition is a consequence of the pole

structure of the time-ordered T and W , see Ref. [14].) In order

to be able to perform the ǫ integration analytically, we rewrite

Eq. (28) in the Padé form

T (−z) =
∑

µ

aµ

z − pµ

. (29)

The residues aµ and poles pµ are determined to machine

precision with the Newton-Raphson technique. Note that for

real z = ω, there are again two different Padé formulas for

ω � 0 and ω < 0. Equation (29) then replaces the linear

or spline interpolation of T discussed earlier. Fortunately,

the resulting ǫ integrals appearing in Eq. (20) can easily be

expressed with elementary functions, again in the form of

a piecewise integration within the intervals of definition of

wk(ǫ).

B. Analytic continuation

In the AC approach, one employs a formulation on the

imaginary frequency axis, where Tqm,kn(iω) has a smooth

behavior, so frequency convolutions can be carried out accu-

rately on relatively coarse frequency meshes. The self-energy

is then also defined on a mesh of imaginary frequencies,

usually the same mesh,

〈ϕqm|�(iω)|ϕqm〉

=
1

2π

�

8π3

∑

n

∫

d3k

∫ ∞

−∞
dω′ Tqm,kn(−iω′)

iω + iω′ − ǫkn

. (30)

The frequency and subsequent k integrations are computed

in the same way as the first term of Eq. (27) with ω → iω,

see Appendix A. In order to obtain the physically relevant

self-energy, an analytic continuation to the real-frequency axis

has to be carried out, for which Padé approximants [13] in

the form of Eqs. (28) and (29) [then T → �, whose diagonal

elements fulfill the symmetry �(−iω) = �∗(iω)] are often

employed.

5The continued fraction is truncated at cM , where M is the number

of mesh points ωµ. Equation (28) is only valid if M is even because

only then does the formula behave as z−1. If the number of mesh

points is odd, an additional coefficient (cM+1, to reach an even

number of coefficients) can be fixed by imposing another constraint,

e.g., for the asymptotic ω → ∞ behavior or for the gradient at

ω = 0.
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IV. COMPUTATIONAL DETAILS

We have implemented the new tetrahedron k integration

method into the SPEX code [8] and applied it to the GT

self-energy, Eq. (26), where the T matrix is constructed

from solutions of the Bethe-Salpeter equation based on a

Wannier representation [6]. The results shown in the next

section are for iron, which exhibits a particularly strong

electronic renormalization due to electron-magnon scattering.

Core and valence electrons are treated on an equal foot-

ing within the full-potential linearized augmented-plane-wave

(FLAPW) method. We will show the self-energy for selected

states calculated with a 10 × 10 × 10 k-point set and also the

q-resolved spectral function

Sσ (ω, q)

= −
1

π
sgn(ω − ǫF )

∑

m

Im
1

ω − ǫσ
qm − �σ

qm(ω − �v )
(31)

(GT -renormalized band structure), where �σ
qm(ω) =

〈ϕσ
qm|�σ (ω)|ϕσ

qm〉 and �v is a parameter defined in such

a way that the many-body renormalization leaves the Fermi

energy unchanged [4,6]. (The parameter �v can be viewed as

enforcing a self-consistency condition on the self-energy.)

We note that setting �σ
qm(ω − �v ) ≡ −iηsgn(ω − ǫF )

(with a positive infinitesimal η) would yield [according to

Im(ω ∓ iη)−1 = ±πδ(ω)] the spectral function of the nonin-

teracting reference system: a series of delta functions, one for

each single-particle energy ǫσ
qm. The self-energies in the GT

and GW approximation have nonvanishing (noninfinitesimal)

real and imaginary parts, and the spectral function then be-

comes a smooth function of frequency. Usually, the GW self-

energy shows only little structure over the whole frequency

range of the valence and low-lying conduction states. It is then

possible to solve approximately an effective single-particle

equation (the quasiparticle equation) instead of calculating the

spectral function of Eq. (31). The solution can be represented

as a renormalized band structure that often looks very similar

to the one of the noninteracting reference system. Its band

energies differ from the latter by the real-part of the self-

energy, and the imaginary part gives rise to a lifetime band

broadening, which, at that, is often neglected. This approach

proves to be inadequate for the GT self-energy, which shows

much more structure in the relevant frequency range. We will
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FIG. 5. Real part of self-energy for [(a) and (b)] the highest occupied spin-up and [(c) and (d)] the lowest unoccupied spin-down state at

the Ŵ point of iron. In (a) and (c), we show the self-energy calculated with CD using the standard (black line) and the new tetrahedron method

(magenta line), as well as the one calculated with AC using the new tetrahedron method (dashed green line). The magenta and green (solid)

curves in (b) and (d) are the same as in (a) and (c). In addition, we show the AC self-energy calculated with the standard tetrahedron method

as the blue dashed line. The frequency is with respect to the Fermi energy.
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FIG. 6. T matrix elements for q = 0, k = (0, 1, 1)/10 (with respect to the reciprocal basis vectors), m = 6 (spin up), (a) n = 6 and

(b) n = 2 (spin down). Real and imaginary components shown as green and magenta lines, respectively. The imaginary component vanishes

at ω = 0, see insets. The unphysical sign change of the imaginary part at around 1.5 eV (a) is due to a violation of causality [6]. The sharp

peak close to ω = 0 corresponds to a spin-wave excitation. The broad continuum at larger frequencies (positive and also negative, see insets)

are due to Stoner excitations.

see that this can lead to a loss of quasiparticle character of the

bands. For this reason, we directly evaluate Eq. (31) without

resorting to a quasiparticle approximation.

Once Sσ (ω, q) has been evaluated for several q vectors

along a high-symmetry line in the Brillouin zone, one can

combine these to prepare a renormalized band structure. We

have done this along a path from P over Ŵ to N. The spectral

function was calculated for 312 q points along this path.

We used the same parameters as detailed in Ref. [6] and

considered several k-point sets (5 × 5 × 5, 7 × 7 × 7, 10 ×
10 × 10, and 14 × 14 × 14) to investigate the k convergence

of the renormalized band structure. The calculations were

carried out on the supercomputer JURECA at the Jülich

Supercomputing Centre [15].

V. RESULTS

In a first test, we have calculated the self-energy for two

states, the highest occupied spin-up and the lowest unoccupied

spin-down state at the Ŵ point of iron. Figures 5(a) and 5(c)

show the real part of the self-energies as obtained with the

CD technique using the standard (black line) and the new

tetrahedron method (magenta line). The unphysical strong

variation of the black curve is caused by the strong variation

of the T matrix (Fig. 6), which, in the standard method, is not

properly integrated out.

To be more precise, in the expression �(ω) ∼
∑

k wkTk(ω − ǫk ) the energies ǫk are discrete numbers (since

the k-point set is discrete), so the functional form of Tk(ω)

imprints itself on the self-energy �(ω). In the new integration

method, ǫk is taken as a continuous variable, and the strong

variations of the T matrix are properly integrated over

according to �(ω) ∼
∑

k

∫

wk(ǫ)Tk(ω − ǫ)dǫ, producing a

smooth and physical self-energy, shown as the magenta line.

The magenta line has the same overall form as the black line

but without exhibiting the strong fluctuations.

In addition, Figs. 5(a) and 5(c) include the self-energy

as obtained from AC using the new tetrahedron method as

the green dashed line. Although, as discussed before, the

new tetrahedron method was implemented specifically for

integrations over real frequencies, it also improves consider-

ably the integration along the imaginary frequency axis and

the subsequent analytic continuation. It is extraordinary how

closely the green dashed line follows the magenta line, in

particular for the spin-down self-energy [Fig. 5(c)]. The AC

self-energy does show some deviations especially for large

positive and negative frequencies, but one should keep in

mind that, although the self-energies enter Eq. (31) with their

ω dependence over the whole frequency range, the largest

contributions come from frequencies around ω = ǫσ
qm where

the denominator reduces to �σ
qm(ω − �v ). We will later see

that, when being used with the new tetrahedron method, the

AC self-energies are generally nearly as accurate and stable as

the CD self-energy, and that at a fraction of computing time.

In Figs. 5(b) and 5(d), we compare the magenta and

green lines with the self-energy obtained from AC using

the standard tetrahedron method (blue dashed lines). In fact,

this self-energy is much less accurate than the ones cal-

culated with the new method. It exhibits some spurious

oscillations in the important frequency region close to the

Fermi energy (ω = 0), which will have a detrimental ef-

fect on the q-resolved spectral functions, discussed in the

following.

After having calculated �σ
qm(ω) for each state m, it is

possible to evaluate Eq. (31) yielding the spectral function

Sσ (ω, q) for the respective q point. This can be done for a

number of q points along a line in reciprocal space, which

then yields the renormalized band structure as explained in

the previous section. Figures 7 and 8 present the renormalized

band structures for the spin-up and spin-down channels of iron

from P to Ŵ and Ŵ to N calculated with four different k-point

sets: 5 × 5 × 5, 7 × 7 × 7, 10 × 10 × 10, and 14 × 14 × 14.
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FIG. 7. GT -renormalized spin-up band structures of iron calculated with four methods: CD-std (standard tetrahedron method) (first row),

AC-std (second row), CD-new (new tetrahedron method) (third row), AC-new (fourth row), and hyb-new (fifth row) as well as four k-point

sets: 5 × 5 × 5 (first column), 7 × 7 × 7 (second column), 10 × 10 × 10 (third column), and 14 × 14 × 14 (fourth column).

The color plots enable a detailed investigation of the lifetime

broadening.

The diagrams clearly demonstrate the numerical stability

of the different techniques, which we abbreviate with CD-

std, AC-std, CD-new, AC-new, and hyb-new, where “std”

and “new” refer to the standard and new tetrahedron in-

tegrations, respectively. Given the strong variation of the

self-energy seen in Fig. 5, it is surprising that CD-std yields a

band structure, which, while clearly demonstrating numerical

instabilities, is overall qualitatively correct. Although AC-std
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FIG. 8. Same as Fig. 7 for the spin-down channel.

improves on the quality of the band structure away from the

Fermi energy due to the “smoothening” effect of the analytic

continuation, the spurious oscillations of the self-energy [see

Figs. 5(b) and 5(d)] worsen the accuracy of the spectral

functions close to ǫF (ω = 0). In principle, the instabilities can

be “converged away” by improving the k-point sampling; the

quality of the 14 × 14 × 14 band structure is better than the

one of the 5 × 5 × 5 set. The convergence is, however, very

slow, and the calculations soon become unwieldy.

The problems discussed above originate from using the

standard tetrahedron method, which is not made for integrat-

ing highly nonlinear functions such as the T matrix. The
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problems are solved with the new tetrahedron method as

demonstrated by the GT band structures obtained from CD-

new and AC-new. The CD-new plots are particularly smooth

and show a very good k-point convergence. Even the dia-

gram obtained with the coarsest k-point set 5 × 5 × 5 differs

only little from the one obtained with a 14 × 14 × 14 k-point

sampling. In the AC-new plots, one can see that the analytic

continuation (extrapolation) from the imaginary to the real

frequency axis introduces slight numerical instabilities in the

band structures. These are more pronounced in the spin-

up than in the spin-down channel because the many-body

renormalization is stronger in the former. However, apart from

these instabilities, the band structures obtained with CD-new

and AC-new are very similar, while the computational time of

the latter is much smaller than that of the former. In the last

row, we have also included results from the hybrid method,

which are (practically) identical to the ones from CD-new.

The hybrid method is computationally faster than the CD

technique, being between the CD and the AC method in terms

of computational expense.

The high quality of the band structure plots now allow

the many-body renormalization and lifetime broadening

to be investigated in detail. A thorough investigation goes

beyond the purpose of the present work and is deferred to

another paper [6]. However, we want to point the attention

of the reader to the strong renormalization effects seen for

the occupied spin-up and unoccupied spin-down states. In

the spin-up channel, the many-body effects lead to a loss of

quasiparticle character in an energy range between −2.2 and

−1.0 eV. This observation shows that an approximate solution

of the quasiparticle equation as in standard GW calculations

would be inappropriate for the present GT calculations, since

the renormalized band structure cannot be described simply

as a renormalized quasiparticle band structure with added

lifetime effects. For example, the bands below −2.2 eV are

clearly discernible, but, going up in energy, disappear due to

the strong renormalization and, further up, reappear again.

Furthermore, in the spin-down channel, two free-electron-like

bands appear “interrupted” at around 0.5 eV above the Fermi

energy. The spectral functions taken at the q momenta where

the “energy gap” opens would exhibit a double peak structure,

which clearly goes beyond a simple quasiparticle picture.

VI. CONCLUSIONS

In this paper, we have introduced a new tetrahedron inte-

gration technique that is made for the integration of highly-

nonlinear functions in reciprocal space. It, thus, complements

the standard tetrahedron method, which relies on the assump-

tion that the integrand can be approximated as a linear func-

tion within the tetrahedra. The standard method replaces the

integral over reciprocal space by a weighted sum over a finite

set of k points. The new method, on the other hand, employs

weight functions, defined for each state and k point. These

weight functions are independent of the integrand and the

integration bounds. They are smooth functions of frequency

and, thus, allow integrating out any strong variations that the

integrand may have.

The new method was applied to the GT self-energy, which

contains the T matrix, a function that varies very strongly

along the frequency axis due to the presence of sharp spin-

wave resonances and a rich Stoner spectrum. As the T matrix

enters the GT self-energy with the single-particle energies of

the noninteracting reference system in its argument [T (ω −
ǫσ

kn)], the strong variation in frequency translates to an equally

strong variation in reciprocal space.

It was shown that the new integration method substantially

improves the quality of the self-energy and the numerical

stability of the calculated renormalized band structure. In

addition, it improves the k-point convergence considerably.

Even k-point sets as coarse as 5 × 5 × 5 yield iron band struc-

tures of very good quality. We presented results obtained with

two general methods to evaluate the GT self-energy (which

are also used for the GW approach): the contour-deformation

technique and analytic continuation. Both approaches benefit

substantially from the new tetrahedron k integration method.

In addition, we have discussed a hybrid of the two methods,

which gives (nearly) identical results to the standard contour-

deformation approach, while being computationally cheaper.

The new tetrahedron method is not limited to the inte-

gration of self-energies. It can generally be applied for the

integration of functions that vary strongly in reciprocal space

(or, more precisely, that vary strongly with respect to a k

dependent function, such as single-particle band energies), in

particular, functions that represent excitation spectra, which

can exhibit strong many-body resonances.
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APPENDIX A: INTEGRAL ALONG

IMAGINARY FREQUENCY AXIS

When applying the new integration method to the first term

of Eq. (27), an analytic evaluation of the integrals is possible

as well. The derivation is however quite involved, which is

why we discuss it here in detail. One would need to calculate

1

2π

∫

dǫ

∫ ∞

−∞
dω′ wk(ǫ)Tk(−iω′)

ω + iω′ − ǫ

=
1

2π i

∫

dǫ

∫ ∞

−∞
dω′ wk(ǫ)Tk(−iω′)

ω′ + i(ǫ − ω)
, (A1)

where we have omitted the indices n, m, and q. Let us assume

that T (−z) is approximated according to Eq. (29) and let

us consider only one term, i.e., T (−iω′) ∝ 1/(iω′ − p). The

function wk(ǫ) is a third-order polynomial defined in intervals

of ǫ. So, we have to calculate integrals of the type

1

2π i

∫ ǫ2

ǫ1

dǫ ǫm

∫ ∞

0

dω′ 1

[ω′ + i(ǫ − ω)](iω′ − p)

=
−1

2π

∫ ǫ2

ǫ1

dǫ ǫm

∫ ∞

0

dω′ 1

[ω′ + i(ǫ − ω)](ω′ + ip)

=
1

2π i

∫ ǫ2

ǫ1

dǫ ǫm ln[i(ǫ − ω)] − ln(ip)

ω + p − ǫ
=:

Iω,ǫ1,ǫ2
m

2π i
(A2)
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with m = 0, 1, 2, 3. (In the standard integration method, there

is no ǫ integration, and the result is simply 1
2π i

ln[i(ǫ−ω)]−ln(ip)

ω+p−ǫ

with ǫ = ǫkn.)

With the help of (1 − x)−1 =
∑∞

n=0 xn and ln(1 − x) =
−

∑∞
n=1 xn/n for |x| < 1, three simple series expansions

can be derived for the cases (a) |ǫ| < min(|ω + p|, |ω|),
(b) |ǫ − ω| < |p|, and (c) |p| < |ǫ − ω| for all ǫ ∈ [ǫ1, ǫ2]:

Iω,ǫ1,ǫ2

m = (ω + p)m

∞
∑

n=0

ln(−iω) − ln(ip) −
∑n

ν=1(1 + p/ω)ν/ν

n + m + 1

(

ǫ

ω + p

)n+m+1
∣

∣

∣

∣

∣

ǫ2

ǫ1

case(a) (A3)

Iω,ǫ1,ǫ2

m =
m

∑

µ=0

(

m

µ

)

ωm−µ pµ

{

∑∞
n=µ Jω,ǫ1,ǫ2

n /pn+1 case (b)

(−1)
∑∞

n=1−µ pn−1J
ω,ǫ1,ǫ2

−n case (c)
(A4)

with Jω,ǫ1,ǫ2
n :=Jn(ǫ2 − ω) − Jn(ǫ1 − ω) and

Jn(y):=
∫

yn[ln(y) − ln(ip)]dy =

{

1
2

ln(iy)[ln(iy) − ln(ip)] for n = −1

yn+1

n+1
[ln(iy) − ln(ip) − 1

n+1
] for n �= −1

. (A5)

Furthermore, a Taylor expansion with respect to ǫ2 − ǫ1 leads to

Iω,ǫ1,ǫ2

m =
∞

∑

n=0

(ǫ2 − ǫ1)n+1

n + 1
F (n)

m (ǫ1) (A6)

with

F
(n)

0 (ǫ) =
1

(ω + p − ǫ)n+1

[

ln[−i(ǫ − ω)] − ln(ip) +
n

∑

ν=1

(−1)ν−1

ν

(

ω + p − ǫ

ǫ − ω

)ν
]

(A7)

and F (n)
m (ǫ) = ǫF

(n)
m−1(ǫ) + F

(n−1)
m−1 (ǫ) for m > 0. This Taylor

expansion converges for |ǫ2 − ǫ1| < min(|ω + p − ǫ1|, |ǫ1 −
ω|). There is an analogous Taylor expansion around ǫ2.

These power series already cover most of the situations.

However, for the case that neither of the above conditions

(which should be made stricter for numerical reasons) are

fulfilled, we need to derive an exact analytic expression for

the integral in Eq. (A2). Later, we will also have to consider

the case of a branch cut. We note in passing that the power

series converge very quickly where the analytic expression to

be derived in the following becomes numerically unstable.

As a first remark, one might be tempted to replace the nu-

merator by ln(ǫ − ω) − ln(p) or even ln( ǫ−ω
p

) using ln(ab) =
ln(a) + ln(b), but this latter relationship is only valid modulo

2π i in the case of complex logarithms: ln(ab) − ln(a) − ln(b)

can take the three values 0, 2π i, and −2π i. As a second

important remark, the primitive of 1/z is not unique. Instead

of ln(z) one can choose ln(az) with any nonzero complex

number a [as is easily proven by differentiating ln(az)]. The

choice of a (to be more precise, its phase) affects the location

of the branch cut. Here, we take ln(z) as the primitive because

the value at the upper bound limω′→∞ ln[ω′ + i(ǫ − ω)] −
ln(ω′ + ip) then disappears.

For m = 0, we substitute t = ǫ−ω
p

and get

I
ω,ǫ1,ǫ2

0 =
∫ t2

t1

dt
ln(ipt ) − ln(ip)

1 − t

= [ln(ip) − ln(ipt )] ln(1 − t ) − Li2(1 − t )|t2t1

= {ln(ip) − ln[i(ǫ − ω)]} ln

(

1 −
ǫ − ω

p

)

− Li2

(

1 −
ǫ − ω

p

)
∣

∣

∣

∣

ǫ2

ǫ1

(A8)

with the dilogarithm Li2(z) =
∫ z

1
ln(t )

1−t
dt (Spence’s function),

see Appendix B. It is instructive to consider the incorrect

usage of ln(ipt ) − ln(ip) = ln(t ), which would lead to the

much simpler but incorrect result Li2(t ). There is a rela-

tionship between Li2(t ) and Li2(1 − t ) (Appendix B), which

turns the above expression into Li2(t ) + [ln(ip) + ln(t ) −
ln(ipt )] ln(1 − t ) − π2

6
. The second term (the constant third

term is irrelevant for the primitive) corrects for the fact that

ln(ip) + ln(t ) − ln(ipt ) can be a multiple of 2π i. Differenti-

ating this expression gives
ln(t )+[ln(ipt )−ln(t )−ln(ip)]

1−t
, the bracket

[. . . ] taking care of the multivaluedness.

For m > 0, we can use the recursion

Iω,ǫ1,ǫ2

m :=
∫ ǫ2

ǫ1

dǫ ǫm ln[i(ǫ − ω)] − ln(ip)

ω + p − ǫ

=
∫ ǫ2

ǫ1

dǫ ǫm−1[ln[i(ǫ − ω)]

− ln(ip)]

(

ω + p

ω + p − ǫ
− 1

)

= ln(ip)
ǫm

m

∣

∣

∣

∣

ǫ2

ǫ1

+ (ω + p)Iω,ǫ1,ǫ2

m−1 − L
ω,ǫ1,ǫ2

m−1 , (A9)

where Lω,ǫ1,ǫ2
m =

∫ ǫ2

ǫ1
ǫm ln[i(ǫ − ω)]dǫ =

∑m
µ=0 (

m

µ
)ωm−µ

(−i)µ{lµ[i(ǫ2 − ω)] − lµ[i(ǫ1 − ω)]} and lµ(t ) =
∫

tµ ln

tdt = tµ+1

µ+1
[ln(t ) − 1

µ+1
] for µ � 0.

One has to take into account the branch cuts of the primi-

tive in Eq. (A8). The branch cuts of the functions ln(z) and

Li2(z) are along the negative real axis. Let us assume that

the argument 1 − t crosses this axis at 1 − t0 < 0. The diloga-

rithm Li2(1 − t0) changes value there by −2π i ln(t0) (crossing

the real axis from above). With ln(ip) − ln(ipt0) = − ln(t0)
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FIG. 9. Complex plane with numbers (1–8) labeling the regions

where the respective series for the dilogarithm Li2(z) converges

fastest (see text).

(which holds true in this case as t0 is a real positive number),

one obtains the same step for the other term, canceling the

first step exactly. So, for the argument 1 − t , there is no

problem with the branch cut. However, if the branch cut of

ln(ipt ) is crossed by the integration path, i.e., if there is a t0
along the path [t1, t2] that fulfills ℜ(pt0) = 0 and ℑ(pt0) > 0,

we define Iω,ǫ1,ǫ2
m :=Iω,ǫ1,ǫ0∓η

m + Iω,ǫ0±η,ǫ2
m for ǫ1 ≶ ǫ2 and ǫ0 =

ℜω (following from ℜ(ǫ0 − ω) = ℜ(pt0) = 0) with a positive

infinitesimal η.

For the negative integral branch (from −∞ to 0), we first

assume the symmetry T (iω) = T (−iω) (which is fulfilled by

W but actually not by the T matrix, see below), so T (iω′) ∝
1/(iω′ − p) as before. Then, the negative integral branch

contributes with

1

2π i

∫ ǫ2

ǫ1

dǫ ǫm

∫ 0

−∞
dω′ 1

[ω′ + i(ǫ − ω)](−iω′ − p)

=
1

2π

∫ ǫ2

ǫ1

dǫ ǫm

∫ 0

−∞
dω′ 1

[ω′ + i(ǫ − ω)](ω′ − ip)

=
1

2π i

∫ ǫ2

ǫ1

dǫ ǫm ln[−i(ǫ − ω)] − ln(ip)

−ω + p + ǫ

=
(−1)m

2π i

∫ −ǫ2

−ǫ1

dǫ ǫm ln[i(ǫ + ω)] − ln(ip)

−ω + p − ǫ

=
(−1)m

2π i
I−ω,−ǫ1,−ǫ2

m , (A10)

where we have taken ln(−z) as the primitive of 1/z because

the integration now extends to −∞. Obviously, we simply

have to replace ǫ1, ǫ2, ω → −ǫ1,−ǫ2,−ω and can then use

the same formulas as before. If T (iω) �= T (−iω), one would

have to determine the poles and residues of the Padé formula

specifically for T (iω) and evaluate Eq. (A10) with these

new parameters. For example, for the T matrix, we have the

symmetry T (iω) = T ∗(−iω), whence aµ → −a∗
µ and pµ →

−p∗
µ.

We note that the tetrahedron weight functions should be

defined as polynomials with respect to a relative energy such

as ǫ − ǫkn, as recommended in Sec. II B. It is easy to see that

the above formulas remain valid if we set ǫ → ǫ − ǫkn and

ω → ω − ǫkn.

APPENDIX B: DILOGARITHM (SPENCE’S FUNCTION)

The dilogarithm (Spence’s function) is defined by

Li2(z) :=
∫ z

1

ln(t )

1 − t
dt . (B1)

The argument z can be complex, and Li2(z) has a branch cut

at (−∞, 0). The dilogarithm is given by the series expansion

Li2(z) =
∞

∑

µ=1

(1 − z)µ

µ2
(B2)

for |1 − z| � 1 (series 1 of Fig. 9). Note that ln(z) has a

similar series with the denominator µ, hence the name. The

dilogarithm fulfills the identities

Li2(1 − z) = −
∫ z

0

ln(1 − t )

t
dt =

∫ z

0

[

−
ln(1 − t )

t
+

ln(t )

1 − t

]

dt − Li2(z) +
π2

6
= −Li2(z) − ln(z) ln(1 − z) +

π2

6
, (B3)

Li2

(

1

z

)

=
∫ 1/z

1

ln(t )

1 − t
dt =

∫ z

1

ln(s)

1 − 1
s

ds

s2
=

∫ z

1

ln(s)

(

1

s − 1
−

1

s

)

ds = −Li2(z) −
1

2
ln2(z) , (B4)

and a special value is Li2(0) =
∑∞

µ=1 1/µ2 = π2/6. With the help of these identities one can relate Li2(z) to Li2(y) with y =
1 − z, 1

z
, 1

1−z
, 1 − 1

z
, and 1

1− 1
z

(series 2–6), which allows to pick that y for which the series converges most quickly, i.e., for which

|1 − y| is minimal (and smaller than 1). The resulting series converge quickly except for (the neighborhood of) q = 1/2 + i
√

3/2

(|q| = 1) and q∗. The numbers 0, 1, q (and 0, 1, q∗) form an equilaterial triangle on the complex plane. For these two points, we

have Li2(q) = π2

36
+ iV0 and Li2(q∗) = Li∗2(q) with the Gieseking constant V0 = 1.0149416(. . . ). For the neighborhood of q, we

find

Li2(q + x) = Li2(q) +
∫ x

0

ln(q + s)

q∗ − s
ds = Li2(q) +

∫ x

0

i π
3

+ ln(1 + s/q)

q∗ − s
ds

= Li2(q) + i
π

3
[ln(q∗) − ln(q∗ − x)] +

∫ x/q∗

0

ln (1 − qy)

1 − y
dy , (B5)
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where we have used that ln(q) = iπ/3 and q∗/q = −q as well as the fact that ln(q + s) = ln(q) + ln(1 + s/q) is valid because

q(1 + s/q) does not cross a branch cut of ln(z) along the s integration path (x is a small parameter). The last term can be written

as a series

∫

ln (1 − qy)

1 − y
dy = −

∞
∑

m=1

qm

m

∫

ym

1 − y
dy = −

∞
∑

m=1

qm

m



− ln(1 − y) −
m

∑

µ=1

yµ

µ





= − ln(1 − q) ln(1 − y) +
∞

∑

m=1

qm

m

m
∑

µ=1

yµ

µ

= − ln(1 − q) ln(1 − y) +
∞

∑

µ=1

yµ

µ

∞
∑

m=µ

qm

m

= − ln(1 − q) ln(1 − y) +
∞

∑

µ=1

yµ

µ

[

− ln(1 − q) −
µ−1
∑

m=1

qm

m

]

= −
∞

∑

µ=2

yµ

µ

(

µ−1
∑

m=1

qm

m

)

(B6)

as one can easily verify by differentiating both sides. Now we use 1/q∗ = q and the fact that ln(q∗) − ln(q∗ − x) = − ln(1 − x
q∗ )

is valid because the product q(q∗ − x) does not cross the branch cut of ln(z) and obtain

Li2(q + x) = Li2(q) + i
π

3
[ln(q∗) − ln(q∗ − x)] −

∞
∑

µ=2

(xq)µ

µ

(

µ−1
∑

m=1

qm

m

)

= Li2(q) − i
π

3
ln

(

1 −
x

q∗

)

−
∞

∑

µ=2

(xq)µ

µ

(

µ−1
∑

m=1

qm

m

)

(B7)

(series 7), where the double sum in the last term can be implemented in a single loop. One can also express Eq. (B7) as

Li2(z) = Li2(q) +
π

3

[π

3
− i ln(1 − z)

]

−
∞

∑

µ=2

(z − q)µ
qµ

µ

(

µ−1
∑

m=1

qm

m

)

. (B8)

For Li2(q∗ + x), we use Li2(q∗ + x) = Li∗2(q + x∗) (series 8).
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