000864692 001__ 864692
000864692 005__ 20210130002702.0
000864692 0247_ $$2doi$$a10.1039/C9SM01161G
000864692 0247_ $$2ISSN$$a1744-683X
000864692 0247_ $$2ISSN$$a1744-6848
000864692 0247_ $$2Handle$$a2128/22694
000864692 0247_ $$2altmetric$$aaltmetric:63670845
000864692 0247_ $$2pmid$$apmid:31355828
000864692 0247_ $$2WOS$$aWOS:000481424100008
000864692 037__ $$aFZJ-2019-04386
000864692 082__ $$a530
000864692 1001_ $$0P:(DE-Juel1)171604$$aKyrey, Tetyana$$b0$$eCorresponding author
000864692 245__ $$aInner structure and dynamics of microgels with low and medium crosslinker content prepared via surfactant-free precipitation polymerization and continuous monomer feeding approach
000864692 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2019
000864692 3367_ $$2DRIVER$$aarticle
000864692 3367_ $$2DataCite$$aOutput Types/Journal article
000864692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568018783_22203
000864692 3367_ $$2BibTeX$$aARTICLE
000864692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864692 3367_ $$00$$2EndNote$$aJournal Article
000864692 520__ $$aThe preparation of poly(N-isopropylacrylamide) microgels via classical precipitation polymerization (batch method) and a continuous monomer feeding approach (feeding method) leads to different internal crosslinker distributions, i.e., from core–shell-like to a more homogeneous one. The internal structure and dynamics of these microgels with low and medium crosslinker concentrations are studied with dynamic light scattering and small-angle neutron scattering in a wide q-range below and above the volume phase transition temperature. The influence of the preparation method, and crosslinker and initiator concentration on the internal structure of the microgels is investigated. In contrast to the classical conception where polymer microgels possess a core–shell structure with the averaged internal polymer density distribution within the core part, a detailed view of the internal inhomogeneities of the PNIPAM microgels and the presence of internal domains even above the volume phase transition temperature, when polymer microgels are in the deswollen state, are presented. The correlation between initiator concentration and the size of internal domains that appear inside the microgel with temperature increase is demonstrated. Moreover, the influence of internal inhomogeneities on the dynamics of the batch- and feeding-microgels studied with neutron spin-echo spectroscopy is reported.
000864692 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000864692 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000864692 588__ $$aDataset connected to CrossRef
000864692 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000864692 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000864692 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000864692 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000864692 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x2
000864692 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x3
000864692 7001_ $$00000-0003-4780-8675$$aWitte, Judith$$b1
000864692 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b2
000864692 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b3
000864692 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b4$$ufzj
000864692 7001_ $$0P:(DE-Juel1)145049$$aPasini, Stefano$$b5
000864692 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b6
000864692 7001_ $$00000-0001-6615-2865$$aWitt, Marcus U.$$b7
000864692 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b8
000864692 7001_ $$00000-0003-0555-5104$$avon Klitzing, Regine$$b9
000864692 7001_ $$0P:(DE-HGF)0$$aWellert, Stefan$$b10
000864692 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b11
000864692 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C9SM01161G$$gVol. 15, no. 32, p. 6536 - 6546$$n32$$p6536 - 6546$$tSoft matter$$v15$$x1744-6848$$y2019
000864692 8564_ $$uhttps://juser.fz-juelich.de/record/864692/files/c9sm01161g.pdf$$yOpenAccess
000864692 8564_ $$uhttps://juser.fz-juelich.de/record/864692/files/c9sm01161g.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864692 909CO $$ooai:juser.fz-juelich.de:864692$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171604$$aForschungszentrum Jülich$$b0$$kFZJ
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b2$$kFZJ
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b3$$kFZJ
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b4$$kFZJ
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145049$$aForschungszentrum Jülich$$b5$$kFZJ
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b6$$kFZJ
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b8$$kFZJ
000864692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b11$$kFZJ
000864692 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000864692 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000864692 9141_ $$y2019
000864692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2017
000864692 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000864692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864692 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864692 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864692 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864692 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000864692 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864692 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864692 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864692 920__ $$lyes
000864692 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000864692 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000864692 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000864692 980__ $$ajournal
000864692 980__ $$aVDB
000864692 980__ $$aUNRESTRICTED
000864692 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000864692 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000864692 980__ $$aI:(DE-588b)4597118-3
000864692 9801_ $$aFullTexts