000864694 001__ 864694
000864694 005__ 20210130002703.0
000864694 0247_ $$2doi$$a10.1016/j.ejpb.2019.08.007
000864694 0247_ $$2ISSN$$a0939-6411
000864694 0247_ $$2ISSN$$a1873-3441
000864694 0247_ $$2altmetric$$aaltmetric:64929676
000864694 0247_ $$2pmid$$apmid:31419584
000864694 0247_ $$2WOS$$aWOS:000488421000004
000864694 037__ $$aFZJ-2019-04388
000864694 082__ $$a610
000864694 1001_ $$0P:(DE-HGF)0$$aKaldybekov, Daulet B.$$b0
000864694 245__ $$aMaleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery
000864694 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000864694 3367_ $$2DRIVER$$aarticle
000864694 3367_ $$2DataCite$$aOutput Types/Journal article
000864694 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568020260_22203
000864694 3367_ $$2BibTeX$$aARTICLE
000864694 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864694 3367_ $$00$$2EndNote$$aJournal Article
000864694 520__ $$aLow permeability of the urinary bladder epithelium, poor retention of the chemotherapeutic agents due to dilution and periodic urine voiding as well as intermittent catheterisations are the major limitations of intravesical drug delivery used in the treatment of bladder cancer. In this work, maleimide-functionalised poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-PEG-Mal) nanoparticles were developed. Their physicochemical characteristics, including morphology, architecture and molecular parameters have been investigated by means of dynamic light scattering, transmission electron microscopy and small-angle neutron scattering techniques. It was established that the size of nanoparticles was dependent on the solvent used in their preparation and molecular weight of PEG, for example, 105 ± 1 nm and 68 ± 1 nm particles were formed from PLGA20K-PEG5K in dimethyl sulfoxide and acetone, respectively. PLGA-PEG-Mal nanoparticles were explored as mucoadhesive formulations for drug delivery to the urinary bladder. The retention of fluorescein-loaded nanoparticles on freshly excised lamb bladder mucosa in vitro was evaluated and assessed using a flow-through fluorescence technique and Wash Out50 (WO50) quantitative method. PLGA-PEG-Mal nanoparticles (NPs) exhibited greater retention on urinary bladder mucosa (WO50 = 15 mL) compared to maleimide-free NPs (WO50 = 5 mL). The assessment of the biocompatibility of PEG-Mal using the slug mucosal irritation test revealed that these materials are non-irritant to mucosal surfaces.
000864694 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000864694 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000864694 588__ $$aDataset connected to CrossRef
000864694 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000864694 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000864694 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000864694 7001_ $$0P:(DE-HGF)0$$aFilippov, Sergey K.$$b1
000864694 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b2
000864694 7001_ $$0P:(DE-HGF)0$$aKhutoryanskiy, Vitaliy V.$$b3$$eCorresponding author
000864694 773__ $$0PERI:(DE-600)1483524-1$$a10.1016/j.ejpb.2019.08.007$$gVol. 143, p. 24 - 34$$p24 - 34$$tEuropean journal of pharmaceutics and biopharmaceutics$$v143$$x0939-6411$$y2019
000864694 909CO $$ooai:juser.fz-juelich.de:864694$$pVDB$$pVDB:MLZ
000864694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b2$$kFZJ
000864694 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000864694 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000864694 9141_ $$y2019
000864694 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864694 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J PHARM BIOPHARM : 2017
000864694 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864694 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864694 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864694 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864694 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864694 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864694 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864694 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864694 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864694 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000864694 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000864694 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864694 920__ $$lyes
000864694 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000864694 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000864694 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000864694 980__ $$ajournal
000864694 980__ $$aVDB
000864694 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000864694 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000864694 980__ $$aI:(DE-588b)4597118-3
000864694 980__ $$aUNRESTRICTED