000864697 001__ 864697 000864697 005__ 20210130002703.0 000864697 0247_ $$2doi$$a10.1088/1367-2630/ab0e18 000864697 0247_ $$2Handle$$a2128/22610 000864697 0247_ $$2altmetric$$aaltmetric:59510040 000864697 0247_ $$2WOS$$aWOS:000466155900003 000864697 037__ $$aFZJ-2019-04391 000864697 082__ $$a530 000864697 1001_ $$0P:(DE-HGF)0$$aBarbarino, S.$$b0$$eCorresponding author 000864697 245__ $$aTopological Devil’s staircase in atomic two-leg ladders 000864697 260__ $$a[London]$$bIOP$$c2019 000864697 3367_ $$2DRIVER$$aarticle 000864697 3367_ $$2DataCite$$aOutput Types/Journal article 000864697 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1566999514_27902 000864697 3367_ $$2BibTeX$$aARTICLE 000864697 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000864697 3367_ $$00$$2EndNote$$aJournal Article 000864697 520__ $$aWe show that a hierarchy of topological phases in one dimension—a topological Devil's staircase—can emerge at fractional filling fractions in interacting systems, whose single-particle band structure describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI class, we present a field-theoretical argument based on bosonization that indicates how the system, as a function of the filling fraction, hosts a series of density waves. Subsequently, based on a numerical investigation of the low-lying energy spectrum, Wilczek–Zee phases, and entanglement spectra, we show that they are symmetry protected topological phases. In sharp contrast to the non-interacting limit, these topological density waves do not follow the bulk-edge correspondence, as their edge modes are gapped. We then discuss how these results are immediately applicable to models in the AIII class, and to crystalline topological insulators protected by inversion symmetry. Our findings are immediately relevant to cold atom experiments with alkaline-earth atoms in optical lattices, where the band structure properties we exploit have been recently realized. 000864697 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x0 000864697 588__ $$aDataset connected to CrossRef 000864697 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0 000864697 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0 000864697 7001_ $$00000-0002-9222-1913$$aRossini, D.$$b1 000864697 7001_ $$0P:(DE-Juel1)177780$$aRizzi, Matteo$$b2 000864697 7001_ $$0P:(DE-HGF)0$$aFazio, R.$$b3 000864697 7001_ $$0P:(DE-HGF)0$$aSantoro, G. E.$$b4 000864697 7001_ $$0P:(DE-HGF)0$$aDalmonte, M.$$b5 000864697 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ab0e18$$gVol. 21, no. 4, p. 043048 -$$n4$$p043048 -$$tNew journal of physics$$v21$$x1367-2630$$y2019 000864697 8564_ $$uhttps://juser.fz-juelich.de/record/864697/files/Barbarino_2019_New_J._Phys._21_043048.pdf$$yOpenAccess 000864697 8564_ $$uhttps://juser.fz-juelich.de/record/864697/files/Barbarino_2019_New_J._Phys._21_043048.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000864697 909CO $$ooai:juser.fz-juelich.de:864697$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000864697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern 000864697 9101_ $$0I:(DE-HGF)0$$60000-0002-9222-1913$$aExternal Institute$$b1$$kExtern 000864697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177780$$aForschungszentrum Jülich$$b2$$kFZJ 000864697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern 000864697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern 000864697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern 000864697 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0 000864697 9141_ $$y2019 000864697 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000864697 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000864697 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000864697 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2017 000864697 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000864697 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000864697 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000864697 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000864697 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000864697 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000864697 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000864697 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000864697 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000864697 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000864697 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000864697 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000864697 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0 000864697 980__ $$ajournal 000864697 980__ $$aVDB 000864697 980__ $$aUNRESTRICTED 000864697 980__ $$aI:(DE-Juel1)PGI-8-20190808 000864697 9801_ $$aFullTexts