000864754 001__ 864754
000864754 005__ 20240711085612.0
000864754 0247_ $$2doi$$a10.1016/j.isci.2019.08.032
000864754 0247_ $$2Handle$$a2128/23020
000864754 0247_ $$2altmetric$$aaltmetric:65385353
000864754 0247_ $$2pmid$$apmid:31518903
000864754 0247_ $$2WOS$$aWOS:000488278300081
000864754 037__ $$aFZJ-2019-04421
000864754 082__ $$a050
000864754 1001_ $$0P:(DE-Juel1)171461$$aHe, Guanghu$$b0
000864754 245__ $$aChemical Environment-Induced Mixed Conductivity of Titanate as a Highly Stable Oxygen Transport Membrane
000864754 260__ $$aAmsterdam$$bElsevier$$c2019
000864754 3367_ $$2DRIVER$$aarticle
000864754 3367_ $$2DataCite$$aOutput Types/Journal article
000864754 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569497064_17156
000864754 3367_ $$2BibTeX$$aARTICLE
000864754 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864754 3367_ $$00$$2EndNote$$aJournal Article
000864754 520__ $$aCoupling of two oxygen-involved reactions at the opposite sides of an oxygen transport membrane (OTM) has demonstrated great potential for process intensification. However, the current cobalt- or iron-containing OTMs suffer from poor reduction tolerance, which are incompetent for membrane reactor working in low oxygen partial pressure (pO2). Here, we report for the first time a both Co- and Fe-free SrMg0.15Zr0.05Ti0.8O3−δ (SMZ-Ti) membrane that exhibits both superior reduction tolerance for 100 h in 20 vol.% H2/Ar and environment-induced mixed conductivity due to the modest reduction of Ti4+ to Ti3+ in low pO2. We further demonstrate that SMZ-Ti is ideally suited for membrane reactor where water splitting is coupled with methane reforming at the opposite sides to simultaneously obtain hydrogen and synthesis gas. These results extend the scope of mixed conducting materials to include titanates and open up new avenues for the design of chemically stable membrane materials for high-performance membrane reactors.
000864754 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000864754 588__ $$aDataset connected to CrossRef
000864754 7001_ $$0P:(DE-HGF)0$$aLiang, Wenyuan$$b1
000864754 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2
000864754 7001_ $$0P:(DE-HGF)0$$aXia, Xiaoliang$$b3
000864754 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b4
000864754 7001_ $$00000-0001-8964-1311$$aJiang, Heqing$$b5$$eCorresponding author
000864754 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b6
000864754 773__ $$0PERI:(DE-600)2927064-9$$a10.1016/j.isci.2019.08.032$$gp. S2589004219303104$$p955-964$$tiScience$$v19$$x2589-0042$$y2019
000864754 8564_ $$uhttps://juser.fz-juelich.de/record/864754/files/1-s2.0-S2589004219303104-main.pdf$$yOpenAccess
000864754 8564_ $$uhttps://juser.fz-juelich.de/record/864754/files/1-s2.0-S2589004219303104-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864754 909CO $$ooai:juser.fz-juelich.de:864754$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b2$$kFZJ
000864754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b4$$kFZJ
000864754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b6$$kFZJ
000864754 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000864754 9141_ $$y2019
000864754 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864754 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000864754 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000864754 9801_ $$aFullTexts
000864754 980__ $$ajournal
000864754 980__ $$aVDB
000864754 980__ $$aUNRESTRICTED
000864754 980__ $$aI:(DE-Juel1)IEK-1-20101013
000864754 981__ $$aI:(DE-Juel1)IMD-2-20101013