001     864754
005     20240711085612.0
024 7 _ |a 10.1016/j.isci.2019.08.032
|2 doi
024 7 _ |a 2128/23020
|2 Handle
024 7 _ |a altmetric:65385353
|2 altmetric
024 7 _ |a pmid:31518903
|2 pmid
024 7 _ |a WOS:000488278300081
|2 WOS
037 _ _ |a FZJ-2019-04421
082 _ _ |a 050
100 1 _ |a He, Guanghu
|0 P:(DE-Juel1)171461
|b 0
245 _ _ |a Chemical Environment-Induced Mixed Conductivity of Titanate as a Highly Stable Oxygen Transport Membrane
260 _ _ |a Amsterdam
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1569497064_17156
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Coupling of two oxygen-involved reactions at the opposite sides of an oxygen transport membrane (OTM) has demonstrated great potential for process intensification. However, the current cobalt- or iron-containing OTMs suffer from poor reduction tolerance, which are incompetent for membrane reactor working in low oxygen partial pressure (pO2). Here, we report for the first time a both Co- and Fe-free SrMg0.15Zr0.05Ti0.8O3−δ (SMZ-Ti) membrane that exhibits both superior reduction tolerance for 100 h in 20 vol.% H2/Ar and environment-induced mixed conductivity due to the modest reduction of Ti4+ to Ti3+ in low pO2. We further demonstrate that SMZ-Ti is ideally suited for membrane reactor where water splitting is coupled with methane reforming at the opposite sides to simultaneously obtain hydrogen and synthesis gas. These results extend the scope of mixed conducting materials to include titanates and open up new avenues for the design of chemically stable membrane materials for high-performance membrane reactors.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liang, Wenyuan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 2
700 1 _ |a Xia, Xiaoliang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 4
700 1 _ |a Jiang, Heqing
|0 0000-0001-8964-1311
|b 5
|e Corresponding author
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 6
773 _ _ |a 10.1016/j.isci.2019.08.032
|g p. S2589004219303104
|0 PERI:(DE-600)2927064-9
|p 955-964
|t iScience
|v 19
|y 2019
|x 2589-0042
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864754/files/1-s2.0-S2589004219303104-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864754/files/1-s2.0-S2589004219303104-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864754
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129637
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21