001     864761
005     20210130002718.0
024 7 _ |a 10.1021/acsaelm.9b00318
|2 doi
024 7 _ |a WOS:000496315000025
|2 WOS
024 7 _ |a altmetric:66208857
|2 altmetric
037 _ _ |a FZJ-2019-04428
082 _ _ |a 620
100 1 _ |a Sasioglu, Ersoy
|0 P:(DE-Juel1)130937
|b 0
|e Corresponding author
245 _ _ |a Proposal for Reconfigurable Magnetic Tunnel Diode and Transistor
260 _ _ |a Washington, DC
|c 2019
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1567767825_14354
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose a reconfigurable magnetic tunnel diode and transistor based on half-metallic magnets (HMMs) and spin gapless semiconductors (SGSs). The two-terminal tunnel diode is composed of a HMM electrode and a SGS electrode separated by a thin insulating (I) tunnel barrier. Depending on the relative orientation of the magnetization of the electrodes, the magnetic tunnel diode allows the electrical current to pass in either one or the other direction. The three-terminal magnetic tunnel transistor consists of a HMM-I-SGS-I-HMM (emitter–base–collector) structure and can be switched on and off by application of a voltage to the base electrode and conducts current in both directions similar to conventional field-effect transistors. The unique energy band structure of the SGS-I-HMM junction prevents base–collector leakage currents and allows dual-mode operation of the transistor. Both devices can be configured by an external magnetic field or by the spin transfer torque switching. By employing the nonequilibrium Green’s function method combined with density functional theory, we demonstrate the reconfigurable rectification characteristics of the proposed diode based on sp-electron materials.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 1
700 1 _ |a Mertig, Ingrid
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1021/acsaelm.9b00318
|g Vol. 1, no. 8, p. 1552 - 1559
|0 PERI:(DE-600)2949097-2
|n 8
|p 1552 - 1559
|t ACS applied electronic materials
|v 1
|y 2019
|x 2637-6113
856 4 _ |u https://juser.fz-juelich.de/record/864761/files/acsaelm.9b00318.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/864761/files/acsaelm.9b00318.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:864761
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21