000864773 001__ 864773
000864773 005__ 20240619091958.0
000864773 0247_ $$2doi$$a10.1039/C9CP01847F
000864773 0247_ $$2ISSN$$a1463-9076
000864773 0247_ $$2ISSN$$a1463-9084
000864773 0247_ $$2altmetric$$aaltmetric:61957270
000864773 0247_ $$2pmid$$apmid:31210243
000864773 0247_ $$2WOS$$aWOS:000483701200034
000864773 037__ $$aFZJ-2019-04440
000864773 082__ $$a540
000864773 1001_ $$0P:(DE-Juel1)166208$$aAmeseder, Felix$$b0
000864773 245__ $$aLocalised contacts lead to nanosecond hinge motions in dimeric bovine serum albumin
000864773 260__ $$aCambridge$$bRSC Publ.$$c2019
000864773 3367_ $$2DRIVER$$aarticle
000864773 3367_ $$2DataCite$$aOutput Types/Journal article
000864773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585999564_29483
000864773 3367_ $$2BibTeX$$aARTICLE
000864773 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864773 3367_ $$00$$2EndNote$$aJournal Article
000864773 520__ $$aDomain motions in proteins are crucial for biological function. In the present manuscript, we present a neutron spin-echo spectroscopy (NSE) study of native bovine serum albumin (BSA) in solution. NSE allows to probe both global and internal dynamics of the BSA monomer and dimer equilibrium that is formed in solution. Using a model independent approach, we were able to identify an internal dynamic process in BSA that is visible in addition to global rigid-body diffusion of the BSA monomer and dimer mixture. The observed internal protein motion is characterised by a relaxation time of 43 ns. The overdamped Brownian oscillator was considered as an alternative analytical theory that was able to describe the internal process as first-order approximation. More detailed information on the physical nature of the internal protein motion was extracted from the q-dependent internal diffusion coefficients ΔDeff(q) that were detected by NSE in addition to global rigid-body translational and rotational diffusion. The ΔDeff(q) were interpreted using normal mode analysis based on the available crystal structures of the BSA monomer and dimer as structural test models. Normal mode analysis demonstrates that the observed internal dynamic process can be attributed to bending motion of the BSA dimer. The native BSA monomer does not show any internal dynamics on the time- and length-scales probed by NSE. An intermolecular disulphide bridge or a direct structural contact between the BSA monomers forms a localised link acting as a molecular hinge in the BSA dimer. The effect of that hinge on the observed motion of BSA in the used dimeric structural model is discussed in terms of normal modes in a molecular picture.
000864773 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000864773 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000864773 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000864773 588__ $$aDataset connected to CrossRef
000864773 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000864773 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000864773 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x0
000864773 7001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b1
000864773 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b2
000864773 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b3
000864773 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas M.$$b4$$eCorresponding author
000864773 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C9CP01847F$$gVol. 21, no. 34, p. 18477 - 18485$$n34$$p18477 - 18485$$tPhysical chemistry, chemical physics$$v21$$x1463-9084$$y2019
000864773 8564_ $$uhttps://juser.fz-juelich.de/record/864773/files/SL42590%20C16458.pdf
000864773 8564_ $$uhttps://juser.fz-juelich.de/record/864773/files/c9cp01847f.pdf$$yRestricted
000864773 8564_ $$uhttps://juser.fz-juelich.de/record/864773/files/SL42590%20C16458.pdf?subformat=pdfa$$xpdfa
000864773 8564_ $$uhttps://juser.fz-juelich.de/record/864773/files/c9cp01847f.pdf?subformat=pdfa$$xpdfa$$yRestricted
000864773 8767_ $$8SL42590$$92019-08-28$$d2019-08-28$$eCover$$jZahlung erfolgt$$pC9CP01847F$$z1000 GBP
000864773 909CO $$ooai:juser.fz-juelich.de:864773$$popenCost$$pOpenAPC$$pVDB$$pVDB:MLZ
000864773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b1$$kFZJ
000864773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b2$$kFZJ
000864773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b3$$kFZJ
000864773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b4$$kFZJ
000864773 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000864773 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000864773 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000864773 9141_ $$y2019
000864773 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000864773 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864773 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000864773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000864773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864773 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864773 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864773 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864773 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000864773 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864773 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000864773 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x1
000864773 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
000864773 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000864773 9801_ $$aAPC
000864773 980__ $$ajournal
000864773 980__ $$aVDB
000864773 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000864773 980__ $$aI:(DE-Juel1)ICS-1-20110106
000864773 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000864773 980__ $$aI:(DE-588b)4597118-3
000864773 980__ $$aAPC
000864773 980__ $$aUNRESTRICTED
000864773 981__ $$aI:(DE-Juel1)IBI-8-20200312
000864773 981__ $$aI:(DE-Juel1)JCNS-1-20110106