| Hauptseite > Publikationsdatenbank > Benchmarking commercial adsorbents for drying air in a packed bed > print |
| 001 | 864785 | ||
| 005 | 20240709082019.0 | ||
| 024 | 7 | _ | |a 10.1016/j.applthermaleng.2019.113942 |2 doi |
| 024 | 7 | _ | |a 1359-4311 |2 ISSN |
| 024 | 7 | _ | |a 1873-5606 |2 ISSN |
| 024 | 7 | _ | |a altmetric:63255464 |2 altmetric |
| 024 | 7 | _ | |a WOS:000484880800039 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-04442 |
| 082 | _ | _ | |a 690 |
| 100 | 1 | _ | |a Erdogan, Meltem |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Benchmarking commercial adsorbents for drying air in a packed bed |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1568790664_18993 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Adsorbents are widely used as desiccant materials to dry air. The performance of an adsorbent strongly depends on the fit of its properties to the process conditions, such as humidity or temperature. Thus, it is crucial to characterize adsorbents at the process conditions of the selected drying application. For experimental characterization of adsorbents, three indicators are selected that reflect important objectives: (1) working capacity reflects the necessary amount of adsorbent, (2) pressure drop across the adsorbent bed reflects the necessary auxiliary energy for ventilation and (3) dehumidification rate reflects the process duration. In this paper, we evaluate 12 commercially available adsorbents (SG 125, SG 127, SG 127H, SG 125B, SG 127B, ProSorb, ArtSorb, SG E (2–4 mm), SG E (3–6 mm), SG M, Zeolite 13X, AQSOA Z02) for conditions derived from an adsorption dishwasher application. Specifically, we employ an adsorption temperature of , a desorption temperature of and a relative humidity of . The results show that there is a trade-off between dehumidification rate and pressure drop across the bed with Pareto-optimal performance of SG M, SG 127 and SG E (3–6 mm). Furthermore, the results show that there is a trade-off between dehumidification rate and working capacity with Pareto-optimal performance of SG 127B, SG E (3–6 mm) and AQSOA Z02. Thus, promising adsorbents for drying air are identified. |
| 536 | _ | _ | |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153) |0 G:(DE-HGF)POF3-153 |c POF3-153 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Bau, Uwe |0 P:(DE-Juel1)172630 |b 1 |
| 700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 2 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.applthermaleng.2019.113942 |g Vol. 160, p. 113942 - |0 PERI:(DE-600)2019322-1 |p 113942 - |t Applied thermal engineering |v 160 |y 2019 |x 1359-4311 |
| 909 | C | O | |o oai:juser.fz-juelich.de:864785 |p VDB |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172630 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172023 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)172023 |
| 913 | 1 | _ | |a DE-HGF |l Technologie, Innovation und Gesellschaft |1 G:(DE-HGF)POF3-150 |0 G:(DE-HGF)POF3-153 |2 G:(DE-HGF)POF3-100 |v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL THERM ENG : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|