000864788 001__ 864788
000864788 005__ 20240709082019.0
000864788 0247_ $$2doi$$a10.1016/j.applthermaleng.2018.07.078
000864788 0247_ $$2ISSN$$a1359-4311
000864788 0247_ $$2ISSN$$a1873-5606
000864788 0247_ $$2altmetric$$aaltmetric:54298029
000864788 0247_ $$2WOS$$aWOS:000460492300132
000864788 037__ $$aFZJ-2019-04445
000864788 082__ $$a690
000864788 1001_ $$0P:(DE-Juel1)172630$$aBau, Uwe$$b0$$ufzj
000864788 245__ $$aOptimal operation of adsorption chillers: First implementation and experimental evaluation of a nonlinear model-predictive-control strategy
000864788 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000864788 3367_ $$2DRIVER$$aarticle
000864788 3367_ $$2DataCite$$aOutput Types/Journal article
000864788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568790931_18880
000864788 3367_ $$2BibTeX$$aARTICLE
000864788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864788 3367_ $$00$$2EndNote$$aJournal Article
000864788 520__ $$aThe control strategy strongly influences the performance of adsorption chillers: efficiency and power density depend on phase times for adsorption and desorption. The optimal phase times depend on system characteristics, inlet conditions, and user’s preferences regarding the trade-off between efficiency and power density. In principle, these optimal phase times can be determined during operation using nonlinear model predictive control (NMPC), but implementation is complex and, therefore, still missing. In this paper, we propose and implement a NMPC strategy at an adsorption-chiller test stand and experimentally evaluate the performance. The NMPC strategy combines a nonlinear process model, state estimation, phase time optimisation, and prediction of future inlet conditions. The NMPC is experimentally tested for two scenarios: (1) a step in desorption inlet temperature and (2) a typical solar-cooling application. Comparison with a typical state-based control shows that NMPC can increase the specific cooling power by 31.1%
000864788 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000864788 588__ $$aDataset connected to CrossRef
000864788 7001_ $$0P:(DE-HGF)0$$aBaumgärtner, Nils$$b1
000864788 7001_ $$00000-0002-8461-7993$$aSeiler, Jan$$b2
000864788 7001_ $$00000-0002-9660-4890$$aLanzerath, Franz$$b3
000864788 7001_ $$00000-0002-3441-8822$$aKirches, Christian$$b4
000864788 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b5$$eCorresponding author$$ufzj
000864788 773__ $$0PERI:(DE-600)2019322-1$$a10.1016/j.applthermaleng.2018.07.078$$gVol. 149, p. 1503 - 1521$$p1503 - 1521$$tApplied thermal engineering$$v149$$x1359-4311$$y2019
000864788 909CO $$ooai:juser.fz-juelich.de:864788$$pVDB
000864788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172630$$aForschungszentrum Jülich$$b0$$kFZJ
000864788 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000864788 9101_ $$0I:(DE-588b)36225-6$$60000-0002-8461-7993$$aRWTH Aachen$$b2$$kRWTH
000864788 9101_ $$0I:(DE-588b)36225-6$$60000-0002-9660-4890$$aRWTH Aachen$$b3$$kRWTH
000864788 9101_ $$0I:(DE-HGF)0$$60000-0002-3441-8822$$a TU Braunschweig$$b4
000864788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b5$$kFZJ
000864788 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b5$$kRWTH
000864788 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000864788 9141_ $$y2019
000864788 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL THERM ENG : 2017
000864788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864788 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864788 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000864788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864788 920__ $$lyes
000864788 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000864788 980__ $$ajournal
000864788 980__ $$aVDB
000864788 980__ $$aI:(DE-Juel1)IEK-10-20170217
000864788 980__ $$aUNRESTRICTED
000864788 981__ $$aI:(DE-Juel1)ICE-1-20170217