| Home > Publications database > Optimal operation of adsorption chillers: First implementation and experimental evaluation of a nonlinear model-predictive-control strategy > print |
| 001 | 864788 | ||
| 005 | 20240709082019.0 | ||
| 024 | 7 | _ | |a 10.1016/j.applthermaleng.2018.07.078 |2 doi |
| 024 | 7 | _ | |a 1359-4311 |2 ISSN |
| 024 | 7 | _ | |a 1873-5606 |2 ISSN |
| 024 | 7 | _ | |a altmetric:54298029 |2 altmetric |
| 024 | 7 | _ | |a WOS:000460492300132 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-04445 |
| 082 | _ | _ | |a 690 |
| 100 | 1 | _ | |a Bau, Uwe |0 P:(DE-Juel1)172630 |b 0 |u fzj |
| 245 | _ | _ | |a Optimal operation of adsorption chillers: First implementation and experimental evaluation of a nonlinear model-predictive-control strategy |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1568790931_18880 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The control strategy strongly influences the performance of adsorption chillers: efficiency and power density depend on phase times for adsorption and desorption. The optimal phase times depend on system characteristics, inlet conditions, and user’s preferences regarding the trade-off between efficiency and power density. In principle, these optimal phase times can be determined during operation using nonlinear model predictive control (NMPC), but implementation is complex and, therefore, still missing. In this paper, we propose and implement a NMPC strategy at an adsorption-chiller test stand and experimentally evaluate the performance. The NMPC strategy combines a nonlinear process model, state estimation, phase time optimisation, and prediction of future inlet conditions. The NMPC is experimentally tested for two scenarios: (1) a step in desorption inlet temperature and (2) a typical solar-cooling application. Comparison with a typical state-based control shows that NMPC can increase the specific cooling power by 31.1% |
| 536 | _ | _ | |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153) |0 G:(DE-HGF)POF3-153 |c POF3-153 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Baumgärtner, Nils |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Seiler, Jan |0 0000-0002-8461-7993 |b 2 |
| 700 | 1 | _ | |a Lanzerath, Franz |0 0000-0002-9660-4890 |b 3 |
| 700 | 1 | _ | |a Kirches, Christian |0 0000-0002-3441-8822 |b 4 |
| 700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 5 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1016/j.applthermaleng.2018.07.078 |g Vol. 149, p. 1503 - 1521 |0 PERI:(DE-600)2019322-1 |p 1503 - 1521 |t Applied thermal engineering |v 149 |y 2019 |x 1359-4311 |
| 909 | C | O | |o oai:juser.fz-juelich.de:864788 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172630 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 0000-0002-8461-7993 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 0000-0002-9660-4890 |
| 910 | 1 | _ | |a TU Braunschweig |0 I:(DE-HGF)0 |b 4 |6 0000-0002-3441-8822 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172023 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-Juel1)172023 |
| 913 | 1 | _ | |a DE-HGF |l Technologie, Innovation und Gesellschaft |1 G:(DE-HGF)POF3-150 |0 G:(DE-HGF)POF3-153 |2 G:(DE-HGF)POF3-100 |v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL THERM ENG : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|