000864791 001__ 864791
000864791 005__ 20250129094234.0
000864791 0247_ $$2Handle$$a2128/22657
000864791 0247_ $$2ISSN$$a1866-1807
000864791 020__ $$a978-3-95806-421-8
000864791 037__ $$aFZJ-2019-04448
000864791 041__ $$aEnglish
000864791 1001_ $$0P:(DE-Juel1)169458$$aHerrmann, Markus Guido$$b0$$eCorresponding author$$gmale$$ufzj
000864791 245__ $$aCrystal structures and vibrational properties of chalcogenides: the role of temperature and pressure$$f- 2019-06-24
000864791 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2019
000864791 300__ $$aXI, 156 S.
000864791 3367_ $$2DataCite$$aOutput Types/Dissertation
000864791 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000864791 3367_ $$2ORCID$$aDISSERTATION
000864791 3367_ $$2BibTeX$$aPHDTHESIS
000864791 3367_ $$02$$2EndNote$$aThesis
000864791 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1575634040_300
000864791 3367_ $$2DRIVER$$adoctoralThesis
000864791 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v201
000864791 502__ $$aRWTH Aachen, Diss., 2019$$bDr.$$cRWTH Aachen$$d2019
000864791 520__ $$aPhase-change materials (e. g. GeTe, GeSe, Sb$_{2}$Te$_{3}$ and Sb$_{2}$Se$_{3}$) are characterized by an ultra-fast switching between an amorphous and a crystalline phase and thus, these materials are considered to be hopeful candidates for applications in future computer-based memories which allow a more reliable, more efficient and more capable data storage. In the crystalline phase a strong properties contrast between the tellurides and selenides is observed and and it was concluded that this is due todifferent bonding schemes. While the tellurides are believed to exhibit a metavalent bonding scheme, the selenides are covalently bonded. However, up to now, the metavalent bonding scheme is still under discussion and it is not completely understood. This study is focused on the GeSe$_{x}$Te$_{1-x}$ and Sb$_{2}$Te$_{3-x}$Se$_{x}$ solid solutions which are both relevant systems of phase-change materials. According to the conception of the metavalent bonding scheme it is expected that composition-induced changes and the application of low-temperature and/or high-pressure lead to either a weakening or a collapse of this bonding, however, an experimental conformation is missing. The influence of composition-induced changes, low-temperature and high-pressure on the structural parameter of compounds from the GeSe$_{x}$Te$_{1-x}$ (x=0, 0.2, 0.5, 0.75, 1) solid solution was investigated by a combination of powder and single crystal diffraction. At ambient conditions, three phases, a rhombohedral (0$\le$x(Se)$\le$0.52), a hexagonal (0.58$\le$x(Se)$\le$0.86) and an orthorhombic (0.91$\le$x(Se)$\le$1) one, exist in this system. All phases are stable down to at least 25K and no evidences for structural phase transition have been observed. The thermal behavior of the rhombohedral compounds differs significantly from the one of hexagonal GeSe$_{0.75}$Te$_{0.25}$ which is explained by the additional Ge$\cdot$ $\cdot$Ge and Se/Te$\cdot$ $\cdot$Se/Te interactions which are only present in the crystal structure of the hexagonal phase. Compounds from the stability field of the rhombohedral phase (x=0, 0.2, 0.5) follow the pressure transition pathway: GeTe-I (R3$\textit{m}$)$\rightarrow$GeTe-II (FCC)$\rightarrow$GeTe-III (Pnma). A first-order nature for all observed phase transitions is suggested. It was found that all phase transitions are reversible. For the GeTe-III polymorph, a new crystal structure was determined and it was demonstrated that earlier structural models are erroneously. GeTe-III is isostructural to $\beta$-GeSe, a high-pressure and high-temperature polymorph of GeSe, and crystallizes in the orthorhombic space group $\textit{Pnma}$ with lattice parameter of $\textit{a}$=7.3690(18) Å, $\textit{b}$=3.9249(10)Å and $\textit{c}$=5.698(9) Å. In the structure, Ge$\cdot$ $\cdot$Ge and long-ranged Te$\cdot$ $\cdot$Te interactions are present. Hexagonal GeSe$_{0.75}$Te$_{0.25}$ is [...]
000864791 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000864791 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000864791 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000864791 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000864791 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000864791 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000864791 693__ $$0EXP:(DE-MLZ)TOF-TOF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)TOF-TOF-20140101$$6EXP:(DE-MLZ)NL2au-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eTOFTOF: Cold neutron time-of-flight spectrometer$$fNL2au$$x1
000864791 693__ $$0EXP:(DE-H253)P-P01-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P01-20150101$$aPETRA III$$fPETRA Beamline P01$$x2
000864791 8564_ $$uhttps://juser.fz-juelich.de/record/864791/files/PhD_Herrmann_RWTH_Resub.pdf$$yOpenAccess
000864791 8564_ $$uhttps://juser.fz-juelich.de/record/864791/files/Schluesseltech_201.pdf$$yOpenAccess
000864791 8564_ $$uhttps://juser.fz-juelich.de/record/864791/files/PhD_Herrmann_RWTH_Resub.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864791 909CO $$ooai:juser.fz-juelich.de:864791$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864791 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864791 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864791 9141_ $$y2019
000864791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169458$$aForschungszentrum Jülich$$b0$$kFZJ
000864791 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000864791 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000864791 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000864791 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000864791 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000864791 920__ $$lyes
000864791 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000864791 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000864791 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000864791 9801_ $$aFullTexts
000864791 980__ $$aphd
000864791 980__ $$aVDB
000864791 980__ $$aUNRESTRICTED
000864791 980__ $$abook
000864791 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000864791 980__ $$aI:(DE-Juel1)PGI-4-20110106
000864791 980__ $$aI:(DE-82)080009_20140620
000864791 981__ $$aI:(DE-Juel1)JCNS-2-20110106