000864792 001__ 864792
000864792 005__ 20210130002725.0
000864792 037__ $$aFZJ-2019-04449
000864792 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$eCorresponding author$$ufzj
000864792 1112_ $$a2019 ASCO Annual Meeting$$cChicago$$d2019-05-31 - 2019-06-04$$wUSA
000864792 245__ $$aTreatment monitoring of immunotherapy and targeted therapy using FET PET in patients with melanoma and lung cancer brain metastases: Initial experiences
000864792 260__ $$c2019
000864792 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1567691329_29885
000864792 3367_ $$033$$2EndNote$$aConference Paper
000864792 3367_ $$2BibTeX$$aINPROCEEDINGS
000864792 3367_ $$2DRIVER$$aconferenceObject
000864792 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000864792 3367_ $$2ORCID$$aOTHER
000864792 520__ $$aAbstract:Background: Due to the lack of specificity of contrast-enhanced (CE) MRI, the differentiation of progression from pseudoprogression (PsP) following immunotherapy using checkpoint inhibitors (IT) or targeted therapy (TT) may be challenging, especially when IT or TT is applied in combination with radiotherapy (RT). Similarly, for response assessment of RT plus IT or targeted therapy (TT), the use of CE MRI alone may also be difficult. For problem solving, the integration of advanced imaging methods may add valuable information. Here, we evaluated the value of amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) in comparison to CE MRI for these important clinical situations in patients with brain metastases (BM) secondary to malignant melanoma (MM) and non-small cell lung cancer (NSCLC). Methods: From 2015-2018, we retrospectively identified 31 patients with 74 BM secondary to MM (n = 20 with 42 BM) and NSCLC (n = 11 with 32 BM) who underwent 52 FET PET scans during the course of disease. All patients had RT prior to IT or TT initiation (61%) or RT concurrent to IT or TT (39%). In 13 patients, FET PET was performed for treatment response assessment of IT or TT using baseline and follow-up scans (median time between scans, 4.2 months). In the remaining 18 patients, FET PET was used for the differentiation of progression from PsP related to RT plus IT or TT. In all BM, metabolic activity on FET PET was evaluated by calculation of tumor/brain ratios. FET PET imaging findings were compared to CE MRI and correlated to the clinical follow-up or neuropathological findings after neuroimaging. Results: In 4 of 13 patients (31%), FET PET provided additional information for treatment response evaluation beyond the information provided by CE MRI alone. Furthermore, responding patients on FET PET had a median stable clinical follow-up of 10 months. In 10 of 18 patients (56%) with CE MRI findings suggesting progression, FET PET detected PsP. In 9 of these 10 patients, PsP was confirmed by a median stable clinical follow-up of 11 months. Conclusions: FET PET may add valuable information for treatment monitoring in individual BM patients undergoing RT in combination with IT or TT.
000864792 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000864792 7001_ $$0P:(DE-HGF)0$$aAbdulla, D. S. Y.$$b1
000864792 7001_ $$0P:(DE-HGF)0$$aScheffler, M.$$b2
000864792 7001_ $$0P:(DE-HGF)0$$aSchweinsberg, V.$$b3
000864792 7001_ $$0P:(DE-HGF)0$$aSchlaak, M.$$b4
000864792 7001_ $$0P:(DE-HGF)0$$aKreuzberg, N.$$b5
000864792 7001_ $$0P:(DE-HGF)0$$aLandsberg, J.$$b6
000864792 7001_ $$0P:(DE-Juel1)145110$$aLohmann, P.$$b7$$ufzj
000864792 7001_ $$0P:(DE-HGF)0$$aCeccon, G.$$b8
000864792 7001_ $$0P:(DE-HGF)0$$aWerner, J. M.$$b9
000864792 7001_ $$0P:(DE-HGF)0$$aCelik, E.$$b10
000864792 7001_ $$0P:(DE-HGF)0$$aRuge, M. I.$$b11
000864792 7001_ $$0P:(DE-Juel1)173675$$aKocher, M.$$b12$$ufzj
000864792 7001_ $$0P:(DE-HGF)0$$aMarnitz, S.$$b13
000864792 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b14$$ufzj
000864792 7001_ $$0P:(DE-Juel1)131777$$aLangen, K. J.$$b15$$ufzj
000864792 7001_ $$0P:(DE-HGF)0$$aWolf, J.$$b16
000864792 7001_ $$0P:(DE-HGF)0$$aMauch, C.$$b17
000864792 8564_ $$uhttps://abstracts.asco.org/239/AbstView_239_263257.html
000864792 909CO $$ooai:juser.fz-juelich.de:864792$$pVDB
000864792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b0$$kFZJ
000864792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b7$$kFZJ
000864792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b12$$kFZJ
000864792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b14$$kFZJ
000864792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b15$$kFZJ
000864792 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000864792 9141_ $$y2019
000864792 920__ $$lyes
000864792 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000864792 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000864792 980__ $$aabstract
000864792 980__ $$aVDB
000864792 980__ $$aI:(DE-Juel1)INM-3-20090406
000864792 980__ $$aI:(DE-Juel1)INM-4-20090406
000864792 980__ $$aUNRESTRICTED