TY - RPRT
AU - Hofmann, M. W.
TI - Test und Simulation von Detektorkomponenten des ASPIRIN-Detektors am Experiment ATRAP
VL - 3572
IS - Juel-3572
CY - Jülich
PB - Forschungszentrum Jülich, Zentralbibliothek, Verlag
M1 - FZJ-2019-04467
M1 - Juel-3572
T2 - Berichte des Forschungszentrums Jülich
SP - II, 93 p.
PY - 1998
AB - Goal of the ATRAP - Experiment is to capture the simplest atoms of antimatter, the Anti-Hydrogen-Atom $\overline{H}^{0}$ in a trap, where it can be cooled and detected in order to perform high precision optical spectroscopy. Subject of this work are studies in preparation of the construction of the ASPIRIN-Detector being a realtime imaging Antihydrogen Annihilation Detector in the ATRAP - Experiment. Monte-Carlo-Simulations were performed in order to optimize efficiency and spatial resolution. Main part of the detector will be a cylindrical fibre hodoscope, consisting of several layers of differently oriented fibres allowing spatial resolution. Light output and attenuation length of the fibres were measured and the influence of low temperature was tested. 16-channel multi-anode photomultipliers for the fibre readout were tested, focussing an gain, crosstalk and dank counts. The perfomance of the tubes in magnetic field was studied. The following conclusions are drawn: The material between the annihilation point and the ASPIRIN-Detector should not exceed 3 mm copper, in order to maintain a satisfying spatial resolution. Scintillation does not freeze out under liquid - Helium - temperature, hence scintillating fibres are suitable for the Experiment. The fibres should not guide the light more then 1,5 m since the average attenuation length is of this order. The Photomultiplier tube H6568 of the manufacturer Hamamatsu is capable for the readout of the fibres, but raust be coated with magnetic shielding reducing the field to values below 10G.
LB - PUB:(DE-HGF)3 ; PUB:(DE-HGF)29
UR - https://juser.fz-juelich.de/record/864811
ER -