000864816 001__ 864816
000864816 005__ 20240313094933.0
000864816 037__ $$aFZJ-2019-04472
000864816 1001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b0$$eCorresponding author$$ufzj
000864816 1112_ $$aNEST Conference$$cÅs$$d2019-06-24 - 2019-06-25$$wNorway
000864816 245__ $$aMulti-area spiking network models of macaque and humancortices
000864816 260__ $$c2019
000864816 3367_ $$033$$2EndNote$$aConference Paper
000864816 3367_ $$2BibTeX$$aINPROCEEDINGS
000864816 3367_ $$2DRIVER$$aconferenceObject
000864816 3367_ $$2ORCID$$aCONFERENCE_POSTER
000864816 3367_ $$2DataCite$$aOutput Types/Conference Poster
000864816 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1567761503_28189$$xAfter Call
000864816 520__ $$aUnderstanding the wiring of the brain at the micro-, meso- and macroscale and its influence onneuronal activity is a fundamental problem in neuroscience. Here we present a multi-scale spikingnetwork model of all vision related areas of macaque cortex [1] using the NEST simulator andoutline how we aim to simulate human visual cortex.The connectivity map in our model of the macaque visual cortex integrates data on corticalarchitecture and axonal tracing data into a consistent multi-scale framework and predicts theconnection probability between any two neurons based on their types and locations within areas andlayers [1]. Simulations using this connectivity map reveal a stable asynchronous irregular groundstate with heterogeneous activity across areas, layers and populations [2]. The model of humanvisual cortex will make use of this framework, replacing neuron densities, laminar thicknesses, andcortico-cortical connectivity by estimates for the human brain. To set up the framework, we willfirst model a full cortical hemisphere using published data on cortical architecture [3]. Human-macaque homologies and DTI data will provide reference values for comparison of the cortico-cortical connectivity map. These models will help to elucidate how detailed connectivity of cortexshapes its dynamics on multiple scales and how prominent features of cortical activity can beexplained by population-level connectivity.
000864816 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000864816 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000864816 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000864816 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000864816 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x4
000864816 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x5
000864816 536__ $$0G:(GEPRIS)347572269$$aSPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)$$c347572269$$x6
000864816 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x7
000864816 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x8
000864816 7001_ $$0P:(DE-Juel1)173607$$avan Meegen, Alexander$$b1$$ufzj
000864816 7001_ $$0P:(DE-Juel1)145578$$aBakker, Rembrandt$$b2$$ufzj
000864816 7001_ $$0P:(DE-Juel1)176593$$aMorales-Gregorio, Aitor$$b3$$ufzj
000864816 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b4$$ufzj
000864816 909CO $$ooai:juser.fz-juelich.de:864816$$pec_fundedresources$$pVDB$$popenaire
000864816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b0$$kFZJ
000864816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173607$$aForschungszentrum Jülich$$b1$$kFZJ
000864816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145578$$aForschungszentrum Jülich$$b2$$kFZJ
000864816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176593$$aForschungszentrum Jülich$$b3$$kFZJ
000864816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b4$$kFZJ
000864816 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000864816 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000864816 9141_ $$y2019
000864816 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000864816 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000864816 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000864816 980__ $$aposter
000864816 980__ $$aVDB
000864816 980__ $$aI:(DE-Juel1)INM-6-20090406
000864816 980__ $$aI:(DE-Juel1)IAS-6-20130828
000864816 980__ $$aI:(DE-Juel1)INM-10-20170113
000864816 980__ $$aUNRESTRICTED
000864816 981__ $$aI:(DE-Juel1)IAS-6-20130828