% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Pronold:864816,
author = {Pronold, Jari and van Meegen, Alexander and Bakker,
Rembrandt and Morales-Gregorio, Aitor and van Albada, Sacha},
title = {{M}ulti-area spiking network models of macaque and
humancortices},
reportid = {FZJ-2019-04472},
year = {2019},
abstract = {Understanding the wiring of the brain at the micro-, meso-
and macroscale and its influence onneuronal activity is a
fundamental problem in neuroscience. Here we present a
multi-scale spikingnetwork model of all vision related areas
of macaque cortex [1] using the NEST simulator andoutline
how we aim to simulate human visual cortex.The connectivity
map in our model of the macaque visual cortex integrates
data on corticalarchitecture and axonal tracing data into a
consistent multi-scale framework and predicts theconnection
probability between any two neurons based on their types and
locations within areas andlayers [1]. Simulations using this
connectivity map reveal a stable asynchronous irregular
groundstate with heterogeneous activity across areas, layers
and populations [2]. The model of humanvisual cortex will
make use of this framework, replacing neuron densities,
laminar thicknesses, andcortico-cortical connectivity by
estimates for the human brain. To set up the framework, we
willfirst model a full cortical hemisphere using published
data on cortical architecture [3]. Human-macaque homologies
and DTI data will provide reference values for comparison of
the cortico-cortical connectivity map. These models will
help to elucidate how detailed connectivity of cortexshapes
its dynamics on multiple scales and how prominent features
of cortical activity can beexplained by population-level
connectivity.},
month = {Jun},
date = {2019-06-24},
organization = {NEST Conference, Ås (Norway), 24 Jun
2019 - 25 Jun 2019},
subtyp = {After Call},
cin = {INM-6 / IAS-6 / INM-10},
cid = {I:(DE-Juel1)INM-6-20090406 / I:(DE-Juel1)IAS-6-20130828 /
I:(DE-Juel1)INM-10-20170113},
pnm = {571 - Connectivity and Activity (POF3-571) / 574 - Theory,
modelling and simulation (POF3-574) / HBP SGA1 - Human Brain
Project Specific Grant Agreement 1 (720270) / HBP SGA2 -
Human Brain Project Specific Grant Agreement 2 (785907) /
HBP - The Human Brain Project (604102) / Brain-Scale
Simulations $(jinb33_20121101)$ / SPP 2041 347572269 -
Integration von Multiskalen-Konnektivität und
Gehirnarchitektur in einem supercomputergestützten Modell
der menschlichen Großhirnrinde (347572269) / Advanced
Computing Architectures $(aca_20190115)$ / PhD no Grant -
Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)},
pid = {G:(DE-HGF)POF3-571 / G:(DE-HGF)POF3-574 /
G:(EU-Grant)720270 / G:(EU-Grant)785907 / G:(EU-Grant)604102
/ $G:(DE-Juel1)jinb33_20121101$ / G:(GEPRIS)347572269 /
$G:(DE-Juel1)aca_20190115$ /
G:(DE-Juel1)PHD-NO-GRANT-20170405},
typ = {PUB:(DE-HGF)24},
url = {https://juser.fz-juelich.de/record/864816},
}