| Hauptseite > Publikationsdatenbank > Multi-area spiking network models of macaque and humancortices > print |
| 001 | 864816 | ||
| 005 | 20240313094933.0 | ||
| 037 | _ | _ | |a FZJ-2019-04472 |
| 100 | 1 | _ | |a Pronold, Jari |0 P:(DE-Juel1)165321 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a NEST Conference |c Ås |d 2019-06-24 - 2019-06-25 |w Norway |
| 245 | _ | _ | |a Multi-area spiking network models of macaque and humancortices |
| 260 | _ | _ | |c 2019 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1567761503_28189 |2 PUB:(DE-HGF) |x After Call |
| 520 | _ | _ | |a Understanding the wiring of the brain at the micro-, meso- and macroscale and its influence onneuronal activity is a fundamental problem in neuroscience. Here we present a multi-scale spikingnetwork model of all vision related areas of macaque cortex [1] using the NEST simulator andoutline how we aim to simulate human visual cortex.The connectivity map in our model of the macaque visual cortex integrates data on corticalarchitecture and axonal tracing data into a consistent multi-scale framework and predicts theconnection probability between any two neurons based on their types and locations within areas andlayers [1]. Simulations using this connectivity map reveal a stable asynchronous irregular groundstate with heterogeneous activity across areas, layers and populations [2]. The model of humanvisual cortex will make use of this framework, replacing neuron densities, laminar thicknesses, andcortico-cortical connectivity by estimates for the human brain. To set up the framework, we willfirst model a full cortical hemisphere using published data on cortical architecture [3]. Human-macaque homologies and DTI data will provide reference values for comparison of the cortico-cortical connectivity map. These models will help to elucidate how detailed connectivity of cortexshapes its dynamics on multiple scales and how prominent features of cortical activity can beexplained by population-level connectivity. |
| 536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |x 0 |f POF III |
| 536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |x 1 |f POF III |
| 536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |x 2 |f H2020-Adhoc-2014-20 |
| 536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |x 3 |f H2020-SGA-FETFLAG-HBP-2017 |
| 536 | _ | _ | |a HBP - The Human Brain Project (604102) |0 G:(EU-Grant)604102 |c 604102 |x 4 |f FP7-ICT-2013-FET-F |
| 536 | _ | _ | |a Brain-Scale Simulations (jinb33_20121101) |0 G:(DE-Juel1)jinb33_20121101 |c jinb33_20121101 |x 5 |f Brain-Scale Simulations |
| 536 | _ | _ | |a SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269) |0 G:(GEPRIS)347572269 |c 347572269 |x 6 |
| 536 | _ | _ | |a Advanced Computing Architectures (aca_20190115) |0 G:(DE-Juel1)aca_20190115 |c aca_20190115 |x 7 |f Advanced Computing Architectures |
| 536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 8 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
| 700 | 1 | _ | |a van Meegen, Alexander |0 P:(DE-Juel1)173607 |b 1 |u fzj |
| 700 | 1 | _ | |a Bakker, Rembrandt |0 P:(DE-Juel1)145578 |b 2 |u fzj |
| 700 | 1 | _ | |a Morales-Gregorio, Aitor |0 P:(DE-Juel1)176593 |b 3 |u fzj |
| 700 | 1 | _ | |a van Albada, Sacha |0 P:(DE-Juel1)138512 |b 4 |u fzj |
| 909 | C | O | |o oai:juser.fz-juelich.de:864816 |p openaire |p VDB |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165321 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)173607 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145578 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)176593 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)138512 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2019 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|