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Abstract

The collision-free velocity model is a microscopic pedestrian model, which despite its sim-
plicity, reproduces fairly well several self-organization phenomena in pedestrian dynamics.
The model consists of two components: a direction sub-model that combines individual
desired moving direction and neighbor’s influence to imitate the process of navigating in
a two-dimensional space, and an intrinsically collision-free speed sub-model which controls
the speed of the agents with respect to the distance to their neighbors.

In this paper we generalize the collision-free velocity model by introducing the influence
of walls and extending the distance calculations to velocity-based ellipses. Besides, we
introduce enhancements to the direction sub-module that smooth the direction changes of
pedestrians in the simulation; a shortcoming that was not visible in the original model due
to the symmetry of the circular shapes. Moreover, the introduced improvements mitigate
backward movements, leading to a more realistic distribution of pedestrians especially in
bottleneck scenarios.

We study by simulation the effects of the pedestrian’s shape by comparing the funda-
mental diagram in narrow and wide corridors. Furthermore, we validate our generalized
approach by investigating the flow through bottlenecks with varying exit’s widths.

Keywords: Collision-free velocity model, pedestrian dynamics, dynamical ellipse,
fundamental diagram, validation

1. Introduction

Nowadays, the scale of crowd activities is getting bigger with the constant increase in
the world population and the convenience of transport. Although these events usually are
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carefully planned before they are held, the probability of accidents cannot be neglected,
especially when the number of participants is considerably high. Besides, in some complex
buildings, such as train stations, airports, stadiums, and commercial malls, crowd density
can be relatively high, in particular during rush hours. For increasing the comfort and
usability of these facilities, simulations of pedestrian dynamics may help during the design
of buildings and even after their construction to identify potential bottlenecks and mitigate
their effects [1, 2].

In general, models used to describe pedestrian dynamics can be categorized according
to their scale of definition into macroscopic models, mesoscopic models, and microscopic
models. Microscopic models describe individual trajectories of pedestrians while macroscopic
models rely on aggregated quantities e.g. density, velocity, and flow to describe pedestrian
dynamics in partial differential equation systems [3, 4, 5, 6]. For instance, recent macroscopic
approaches rely on mean-field game theory and the coupling of Hamilton-Jacobi-Bellman
and Fokker-Planck equations [7, 8, 9, 10]. The intermediate scale between microscopic
and macroscopic classes is mesoscopic. Kinetic models [11, 12, 13, 14, 15] describing the
crowd through distribution functions with Boltzmann-type equations and discrete queuing
models [16, 17, 18] belong to the mesoscopic modeling category. Mesoscopic models can
take in consideration behavior heterogeneity [18, 19, 20] or stochastic components in the
interaction. Generally speaking, macroscopic and mesoscopic models consider pedestrian
flow as a continuum and deal with large modeling scales, while microscopic models operate
at local scales. Yet a systematic classification of model features according to the model form
is difficult. We refer to [21, 22, 23, 24, 25, 26, 27] for overviews of modeling approaches for
pedestrian dynamics.

We aim in this article to tackle pedestrians’ interactions as well as their granular aspects
(e.g. pedestrian shape and collision-free property) and to describe their dynamics locally in
simple geometries such as corridors and bottlenecks. Objectives are mainly addressed on
the microscopic modeling scale.

Microscopic models are largely used in traffic engineering to simulate pedestrian dy-
namics. They describe pedestrians individually and can naturally take into account the
heterogeneity and stochasticity of the pedestrians’ behavior. Most of the models can repro-
duce fairly well several collective phenomena in pedestrian dynamics [26, 28, 29]. After more
than 50 years of development, many kinds of microscopic models exist in the literature. We
can distinguish between cellular automate models [30, 31, 32, 33, 34] (Oth order models),
velocity models [35, 36, 37, 38] (1st order models) and force-based models [39, 40, 41, 42]
(2nd order models). While the former models are discrete in space and computationally
fast, the later models are continuous in space and hence are easier to be used in complex
geometries. Whether continuous models are computationally expensive depends not only
on the order of the model but also on its definition. However, generally speaking, first-order
models are less expensive since their numerical solution involves only one integration step,
while two integration steps are required for second-order models. Furthermore, for numer-
ical reasons fine discretization generally requires small integration time steps. In any case,
microscopic models remain however generally much more computationally expensive than
continuum pedestrian models.



In this paper, we focus on the extension of the collision-free velocity model introduced in
[36]. The collision-free velocity model (for short CVM) is a velocity-model, composed of a
speed and a direction sub-models. Unlike most force-based models, CVM, being a first-order
model, is by definition collision-free.

We generalize the CVM by considering the influence of walls and integrating two ex-
tensions. First, we change the shape of agents from circle to dynamical ellipse. In the
original model, circles are used to express the projection of the pedestrian’s body on the
two-dimensional plane. However, many references and researches indicate that a dynam-
ical ellipse can represent pedestrian’s shape more accurately since the space a pedestrian
occupied is influenced by the length of the legs during the motion and the lateral sway-
ing of the body [40]. Therefore, we generalize CVM by extending the distance calculation
to velocity-based ellipse and compare the simulation results with the original model (cir-
cles). After introducing the first extension, an unnatural “shaking” was observed during
the simulation, which is caused by the zero-order direction sub-model. We propose a new
first-order direction sub-model, designed to stabilize the direction changes of pedestrians in
the simulation.

For the sake of completeness, we briefly introduce the original CVM in section 2. The
generalization of the model from circle-based to an ellipse-based definition and the new
direction sub-model are presented in section 3. In section 4, the comparison between the
simulation results of a circle and a velocity-based ellipse is given and the performances of
the new direction sub-model are compared to the original CVM. Finally, we give a summary
of the extensions and discuss limitations of the model as well as future research directions
in the concluding section 5.

2. Collision-free velocity model

In the original model, the moving direction and speed of each pedestrian are updated at
each time step. Moving direction of a pedestrian is obtained by superposing the influence
of the surrounding pedestrians and the desired moving direction. The value of the speed
depends on the minimum spacing in the moving direction. In figure 1 (borrowed from [36]),
pedestrians are modeled as circles with constant diameter . X;, X; and X}, are positions of
pedestrians ¢, j and k. The original CVM is described as

XX X, ) = VilXe, X, ) E(X0 X ), (1)

where V; is the speed of pedestrian ¢ and €; is the moving direction.
Moving direction €; is obtained from the direction sub-model

(XX, = (604 3 Risiy) - ay), (2)

JEN;

where u; is a normalization constant such that ||€;|| = 1, €,° is the desired direction towards
a certain goal, NV; is the set containing all the neighbours of the pedestrian ¢, €;; is the
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Figure 1: Notations used in the collision-free velocity model. ¢ is the size of agents, X;, X; and X, are
positions of pedestrians, €; is the moving direction of pedestrian i and V; is the moving speed, s; ; and s; 1
are distances between the centers of pedestrians, €; ; and €; ; and the unit vector from X; and Xj to X;.

unit vector from the center of the pedestrian j towards the center of the pedestrian ¢. The
function

R(s;;) =k -exp <€_%>, (3)

is used to describe the influence that neighbours act on the moving direction of pedestrian
7. The strength coefficient & > 0 and the distance coefficient D > 0 calibrate the function
accordingly. As mentioned before, ¢ is the diameter of the circle used to represent the
pedestrians and s; ; is the distance between the centers of pedestrian 7 and j.

After obtaining the moving direction €;, the speed model

Vi(s; ;) = min {Vio,max {0, ,51; f}}, (4)

is used to determine the scale of velocity V; in the direction &;. In Eq. (4), V,? is the desired
speed of pedestrian ¢, which depends on various environmental factors such as the existence
of stairs or smoke produced by a fire.

$; = min s;
J€J;

g (5)

is the distance between the center of pedestrian ¢ and the center of the closet pedestrian in
front of pedestrian i, when pedestrian ¢« moving in the direction €;. The definition of set J;
in Eq. (5) is

14
Ji:{jvgi‘gi,jgoand ‘é%‘é},j‘ S—}7 (6)
Si,j
where &5 - €; = 0. J; is the set of all pedestrians overlapping with the grey area in figure 1.

The only coefficient in the speed model is T" > 0 which is used to adjust the gap between
pedestrians.



The above-mentioned definition of the CVM describes specifically interactions among
pedestrians. However, the influence of walls and obstacles has been left from the definition
of the model. In this work, we close this gap by only considering straight walls. If the shape
of the wall in the simulation is irregular, then we will approximate it to a few straight walls.
In figure 2, X;, €; and V; have the same definitions as in figure 1. Besides, there are two
walls in the figure, wall v and w. C, and C,, are the closest points in wall v and w to the
center of pedestrian ¢ respectively. €;, and &, are the unit vectors from C, and C,, to X,.
Si» and s;,, are the distances from C, and C,, to X;. The angle between €; and —¢;, is o,
and the angle between é; and —&;,, is .

Wall,

Figure 2: Notations used in the collision-free velocity model when calculating the influence of walls. £, X,
€3, V; are the size, position, moving direction and moving speed of pedestrian i, ', and (', are the closest
points in wall v and w to X;, €, and €&, ,, are the unit vectors from C, and (), to X;, s;, and s,,, are
the distances from C, and C, to X;, o, is the angle between €; and —¢€j ,, o, is the angle between €; and

_éi,w-
After introducing the influence of walls, the direction model becomes

€ = up - <5io + Z R(si;) - €+ Z Ry(8iw) - é,v>7 (7)

JEN; veW;
where uy is a normalization constant such that ||&|| = 1, W; is the set of walls nearby
pedestrian ¢, and
¢
Ruy(Siw) = kuy - exp <27”>7 (8)
Dy,

where k,, > 0 and D,, > 0 are used to calibrate the function accordingly.
To avoid overlaps of pedestrians with walls, walls should not only influence pedestrian’s
moving direction but also their speed. The expanded speed model is

V; = min {Vio,max {0, ,51; f},max {0, é;UZ }}, 9)
)



where the definitions of s;, ¢, T" are same as in Eq. (4) and

sw; = min

, 10
veEJW; COS (10)

where JW; is the set containing all the walls in the moving direction of pedestrian i (grey
area in figure 2).

3. Generalization of the collision-free velocity model

In this section we introduce extensions of the CVM. We also show how every extension
influences the resulting dynamics and eventually enhances the simulation results.

3.1. From circle to ellipse

We generalize the collision-free velocity model by extending the distance calculations
to velocity-based ellipses. The plane view of the pedestrian i’s body is represented by an
ellipse [43]. The major semi-axis a; and minor semi-axis b; of the ellipse represent the space
requirement in the direction of motion and along the shoulder axis respectively.

In [40] the semi-axis along the walking direction is defined as

Q; = Qpin + Ta‘/ia (11)

where V; is the speed of pedestrian ¢, while ay;, > 0 and 7, > 0 are two parameters.

The idea that the semi-axis of the ellipse along the walking direction vary with speed is
derived from the fact that the spacing a pedestrian needed in her moving direction has a
positive correlation with her speed [44]. This, in turn, is also the role of parameter 7" which
is defined in the speed sub-model to adjust the gap between agents. We conclude that in our
model 7" and 7, model the same behavior of pedestrians even if their physical interpretations
are different.

This becomes apparent after performing a basic stability analysis of the model. Assuming
an one-dimensional system in steady-state , we can derive from the speed sub-model in
Eq. (4) the following relation

1 stea -2 min
‘/steady = /p & dyT ? s (12)

where Viieady and psieady are the speed and the density of pedestrians flow in steady state,
and T = T + 27,. Hence, the parameter 7, and the parameter 7 in speed sub-model have
the same influence on the dynamics. To confirm our assumption we perform numerical
simulations by varying these two parameters while maintaining a constant value of 7. We
can observe from figure 3 that although the values of 7, are different in these simulations,
the results obtained are almost identical when T is constant. In the spirit of Occam’s razor,
we dispense with parameter 7, and opt for a constant semi-axis a;.
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Figure 3: The fundamental diagram obtained in 1D simulations with T = 1.06.

The other semi-axis along the shoulder axis b; is defined according to [40] as a linear
function:
Vi

bi = bmax - (bmax - bmin>v_i07

(13)
with by;, is the minimal semi-width when pedestrian i reaches the desired speed Vio and
buax 1s the maximum semi-width reached when pedestrian ¢ is not moving [40].

We found in simulations with the CVM that this linear relationship does not provide
satisfactory results. Hence we introduce a new non-linear function inspired by the observa-
tion that pedestrians often reduce their occupied space in the vertical direction of motion
by turning their body to walk faster and pass through narrow gaps that are smaller than
the width of their shoulder.

We set

bmax - bmin
bi = bmin -+ m, (14)

which is a Sigmoid function, where the maximum semi-width b,y is equal to the half of a
static pedestrian’s width and by, is equal to the half of a moving pedestrian’s minimum
width. Parameters 3 and ~ are used to adjust the shape of the function as shown in figure 4
which shows the curves of the function for different parameter values.

After defining the semi-axes of the ellipse, we extend the distance calculations from
circle to velocity-based ellipse (figure 5). The ellipses in the full line describe non-moving
pedestrians, while the ellipses in the dashed line represent the pedestrians at the desired
velocity. d;; is the distance between ellipses used to represent pedestrian ¢ and j, which is
defined as the distance between the borders of ellipses ¢ and j, along a line connecting their

7



bmax'\\ — f=5 bmax 1 LTS, —y=0.1
"\\\\ ceer B=20 \_ veer y=02
._-_‘ \\\ —_ B=50 : \ -_ y=0.5
Bl o —=—old function H SO —=—old function
_ '.‘ _ H L\\
£ 3 S I S
= - . ~
o o 1 SN
- \\\
1 N
. o
\ .
~
Bmin 1 Bmin 1 \ -
0 0 Ve
Vim/s] Vim/s]
(a) v=0.1 (b) B =50

Figure 4: The new function of b with different # and -y, the left figure shows the curves of the function with
same v = 0.1 but different 8 while the right figure shows the curves of the function with same g = 50 but
different ~.

centers. d,, is the distance between the wall v and pedestrian 7, which is defined as the
distance between the C, (the closest points in wall v to the center of pedestrian i) and the
border of ellipse used to present pedestrian i, along a line connecting the center of pedestrian
i and C,.

In the new equation of motion, the influence of the agents’ shape is added as follows:
The moving direction & is calculated by Eq. (7), but the new definition of functions

R(d;;) = k - exp (%ﬂ) Ro(diy) = ke - exp (f)—w) (15)

are used. Then the speed V; is obtained by

where

(17)

d; = mind; ;, dw; = min di .

J€J; vEJW; COS (g

Here J; and JW; are the sets containing all pedestrians and walls in the direction of move-

ment (i.e. the pedestrians and walls overlap with the grey area in figure 5). We set the width

of the grey area to 2b,,;, in the case of a velocity-based ellipse. The comparisons between
the models describing agents with different shapes are given in section 4.

3.2. New direction sub-model

After generalizing the model to ellipses, some unrealistic phenomena during simulation
become visible. First of all, backward movements occur very often, which is not realistic es-
pecially in evacuation scenarios. Second, an unnatural “shaking” appears during simulation,
which is due to a strong fluctuation of the ellipse’s orientation.

8



Figure 5: Notations used in the collision-free velocity model after extending the distance calculations between
pedestrians from circle to velocity-based ellipse. d; ; is the length of red segment and d, , is the length of
blue segment. X; and X; are positions of pedestrians, C', is the closet point in wall v to X;, V; and V; are
moving speeds of pedestrians, €; is the moving direction of pedestrian 4, € ; and €;, are the unit vectors
from X; and C, to X, o, is the angle between €; and —€; .

In the original model, the moving direction of pedestrian ¢ is calculated by combining
individual desired moving direction €,° and the neighbors’ influence. Since the direction of
neighbor’s influence is from the center of pedestrians or closest point on the wall towards the
center of the pedestrian 7, the influence can be divided into two parts, one is the projection on
;% and the other one is perpendicular to the projection part. The direction of the projection
part is the reason for backward movements. Pedestrians hardly choose a moving direction
whose projection on €,° is in the inverse direction of €;°. And the cause of the “shaking” is
that pedestrians turn to €; directly after calculation in the original model (Oth order model).

Therefore, our solution has two parts, the projection of neighbors’ influence on €% is
always equal to zero, and introducing a smoothing process (e.g. a relaxation process) in the
direction sub-model. Based on this idea, we propose a new direction sub-model as shown
in figure 6, where €,° is the desired moving direction of the pedestrian i and € is the actual
moving direction, €Z]JV and ejff are the new directions used to calculate the influence of the
pedestrians j and walls v act on pedestrian ¢ respectively.

The new direction sub-model uses two steps to calculate the moving direction of a pedes-

trian. First, we use
Fimun (004 X R - @) + Y Raldi) -2 (18)
JEN; veW;

to calculate the optimal moving direction of the pedestrian 7, us is a normalization constant
such that ||E;|| = 1. The repulsive function R(d; ;) and R,(d;,) are given in Eq. (15) and

9
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Figure 6: Notations used in the new direction sub-model. the direction of influence from pedestrian j to
pedestrian i is vector represented by red chain line and the direction of influence from wall v to pedestrian
i is vector represented by the blue dashed line. X; and X; are positions of the pedestrians, C,, is the closet

—

point in wall v to X;, €;° and €; are the desired moving direction and the actual moving direction of the
pedestrian i, & ; and €; , are the unit vectors from X; and C, to X;, é;];/ and é;]X are the directions used

to calculate the influence of the pedestrians j and walls v act on pedestrian ¢ respectively.

the definition of €ZJJV and €, are

e+ if C; >0, e+ if C, >0,
el =9¢e% or —&% ifC; =0, gl =¢¢&% or —&% ifC, =0, (19)
(—&%* if C; <0. (—&°%* if ¢, < 0.
where
Cy=d,-e0 Co=¢,-8" (20)
Here, €,°+ is the vector obtained by rotating desired moving direction €;° for 90° counter-

clockwise. According to Eq. (19), influence from pedestrians and walls are decided not only
by their position but also by the desired moving direction of the pedestrian i. If the centers
of pedestrians or the closest points in walls to the center of the pedestrian ¢ are located in
the left area to €,°, the direction of influence is defined as right side perpendicular vector of
;% and vice versa. It should be noticed that there might be an extremely rare case when
C; or C, is equal to zero. In this case, the influence direction is decided by multiple factors,
e.g. culture, gender. To simplify the model, the direction of influence is randomly chosen
from &%+ and —&,% in this case, corresponding to pedestrians avoiding front obstacles from
the sides.

Then, we introduce a new relaxation time parameter 7 in the direction sub-model, which

10



is represented as

déi(t)  Ei(t) — é(t)
dt T ’ (21)

where €; is the moving direction of the pedestrian ¢ and E; is the optimal moving direction
calculated by Eq. (18). In this step, we change the direction sub-module from zero-order to
first-order, which does not change the global first-order property of the original CVM. By
adjusting 7, a pedestrian can turn to its moving direction smoothly.

Besides, we use a dynamical vision area in this paper, which is the hatching area in
figure 7. Only the pedestrians and walls located in Area;, which is the dynamical vision area
of the pedestrian 7, influence the moving direction of the pedestrian 7. The set contains all
neighbors of the pedestrian i in Area; is

NArea _ {j’gi.gm <0ore’-é&; <0}. (22)

Here ¢€;; is the vector from the center of neighbors towards the center of the pedestrian i.
As for the walls, only when two vertices of a wall are both in Area;, this wall influences the
moving direction of the pedestrian 7. Vision area of the pedestrian 7 is decided by his desired
moving direction €,° and his actual moving direction ¢&. This means a pedestrian choose
the best moving direction according to the neighbors and walls located in the half area in
front of his moving direction and the half area in front of his desired moving direction. The
dynamical vision area is based on the idea that pedestrians will turn their heads to obtain
the environmental information of the areas in front of their desired moving directions if their
actual moving directions deviate from the desired moving directions. Using this dynamical
vision area can eliminate some unrealistic block occurred between agents when using fixed
vision area in the simulation.

7

Figure 7: Dynamical vision area. X; is the position, Area; is the hatching area, €,° is the desired moving
direction towards the exit, and €; is the actual moving direction of pedestrian i.

These enhancements can almost eliminate the phenomena of backward movement and
“shaking” in the simulation, as shown in figure 8.
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Figure 8: Time series of the angle between the moving direction of a pedestrian and the x-axis (¢).

¢ is defined as the angle between the moving direction of a pedestrian and the x-axis.
As we can see in figure 8, the blue line (original model) shows a strong fluctuation of the
angle over time compared with the red line (our extension).

In the next section, we further show a systematic comparison of both models.

4. Simulation results

In this section, the comparisons and analysis of models with different shapes and different
direction sub-models are given. Preliminary simulation analysis has shown that the model
can satisfy standards addressed in [45, 46] for basic movements of single pedestrians. We aim
in this section to extend the validity of the model in regard to fundamental diagrams and
collective behaviors in straight corridors and bottlenecks. The simulations in this section are
executed with Euler scheme using a time step At = 0.05 s. The update of the pedestrians
is parallel in each step.

First, we perform simulations in a 26 m corridor with periodic boundary condition and
measure the 1D fundamental diagram in a two meters long area located in the middle of
the corridor. The shape of agents in these simulations, as well as the direction sub-model,
are insignificant for the outcome of the simulation since pedestrians can not overtake others
walking in front. Hence, we can focus on the validation of the speed sub-model and the
relation between the speed and the required spacing in front.

The values of parameters are shown in table 1. The desired speed of the pedestrians is
1.34 m/s. The shape of agents is circular with a constant radius a. The value of a is 0.18 m

12



and the value of T" is 1.06 s, which are obtained from the linear relationship of required
length and velocity [44].

Table 1: Parameters of CVM in one-dimensional scenario
VO (m/s) [a(m) [T (s)| k | D(m) | ky | Dy (m)
1D 1.34 0.18 1.06 | 3.0 0.1 6.0 0.05

The simulation results in the 1D case are shown in figure 9. We realize that the obtained
1D fundamental diagram fit well with the experimental data.

(1 ] @ @ simulation

1.2 experiment

e
0.0 =50 )

0.5 1.0 1.5 2.0 2.5 3.0

p[1/m]

Figure 9: Velocity-density relation (fundamental diagram) in one-dimensional scenario, compared with
experimental data [47].

In the second step, we investigate the effect of the agent’s shape on the two-dimensional
fundamental diagram. The simulation scenario is a 26 x 1.8 m? corridor with periodic bound-
ary conditions. We measure the 2D fundamental diagram of models which describing agent
with different shapes. We use three kinds of shapes here, circles with constant radius, el-
lipses with constant a and variable b as defined in Eq. (13) and ellipses with constant a and
variable b as defined in Eq. (14).

The value of V°, a, T and parameters in direction sub-model are the same as in the
one-dimensional case. Table 2 summarizes the value of other parameters.

The simulation results of the 2D case are shown in figure 10. From figure 10, we can
get the result that the shape of agents in the model influence the fundamental diagram
in the two-dimensional scenario, especially in the high-density area. The results obtained
with constant circle and ellipse with variable b defined as Eq. (13) both have deviation with

13



Table 2: Parameters of CVM in two-dimensional scenario

bnin (M) | bpax (m) | b function | 5 | ~
constant circle \ \ \ \ L\
original ellipse 0.15 0.25 (13) \ L\
new ellipse 0.15 0.25 (14) 50 | 0.1
1.4 4 + e e constant circle
+ P = ® original ellipse
1.2 +* - * » new ellipse
! + + experiment
= 1.0
wn
*
£ o8]
)
S 0.6 :
Q A SN
0.4 .
0.2

Figure 10: Relation between flow and density (fundamental diagram) in two-dimensional scenario, compared
with experimental data obtained in the Hermes-project [48].

experimental data in the high-density area while using ellipse with variable b defined as
Eq. (14) can obtain 2D fundamental diagram which is closer to the experimental results.
That means the new function for b we proposed has a positive impact on the simulation
result.

Then, we perform simulations in bottleneck scenarios [47]. We measure the relation
between the flow in the middle of the bottleneck and the width of the bottleneck which is
adjusted from 1.0 m to 2.5 m in our simulations. As we mentioned before, we can observe
some unusual behavior during the simulation. Besides, we observe that the distribution of
pedestrians in front of the bottleneck is different from the experiment. The new direction
sub-model proposed in the previous section can eliminate these unusual phenomena.

In order to compare the simulation results of original and new direction sub-model fairly,
we adjust the value of the parameter 7" to make the flow-width relation obtained from the
simulation results as close to the relation obtained from experimental data as possible. The
shape of the pedestrian in original and new model are both the new dynamical ellipse we
proposed in previous section, the value of a, by, bmax, S and v are given in table 2, the

14



value of k, D, k,, D, are provided in table 1. The desired speeds of the pedestrians are
Gaussian distributed with a mean of 1.34 m/s and a standard deviation of 0.26 m/s [49].
After validation, the value of T" in the original model is 0.5 s and in the new model is 0.45 s.
The value of new parameter 7 introduced in new direction sub-model is 0.3 s. The relations
obtained are shown in figure 11 and compared with experimental data. In figure 11 we can
find the relation obtained from simulation results of the original and new model both very
close to the experimental data.

=@ experiment
== simulation(original)
=~ simulation(new)

5.0 1

JI[1/s]

1.0 1.2 1.4 1.6 1:8 2.0 2.2 2.4
wlim]

Figure 11: Relation between the flow in the middle of the bottleneck and the width of bottleneck, compared
with experimental data[23].

Since the purpose of our extension is to eliminate backward movement and shaking
phenomenon. We compare two indexes to prove that our extensions are useful. The first
one is the backward movement proportion

O — =L k=0 7 (23)

where At is the time step size in the simulation, M; *x At is the simulation duration of
pedestrian ¢, N is the number of pedestrians in the simulation and

0, else 7
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where €;(t) is the moving direction of pedestrian i. This definition means that when the
angle between the actual moving direction and the desired moving direction of a pedestrian
is greater than 90 degrees, we regard it as a backward movement.

We calculate the proportion of backward movement from the simulation results of the
original model and new model in bottleneck scenarios with different widths from 1.0 m to
2.5 m. The results are shown and compared in figure 12.

0.12 =il= simulation(original)
== simulation(new)
0.10 1
0.08 1
Q 0.06
0.04 1
0.02 1
0.00{ A—d—dh—i =5 L —k % A
10 12 14 16 18 20 22 2.4
width[ m]

Figure 12: Proportion of backward movement in bottleneck scenarios with different widths from 1.0 m to
2.5 m.

From figure 12, we can find that the proportion of backward movement significantly de-
creases in the new model compared to the original model. Therefore our extension eliminates
the unrealistic backward movement.

The second index is the average angular variation in moving direction per pedestrian per
frame, which is presented as

N M;
> ) Sik- A
Saverage — =Lk (25>
> (1)
i=1

with

where the definition of Z[;(t), &t — At)] is the angle between &(t) and &(t — At). The

definition of moving direction €;(¢) is the same as before. S;(t) is the absolute value of the
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angle between moving direction in the current time step and the previous one. We compare
this index for the new model and the original model. The results are presented in figure 13.

081 =ill- simulation(original)
== simulation(new)
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Saverage [rad]
o o
w -y

°
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1

i
=
1
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width[m]

o
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1

Figure 13: Average angular variation in moving direction per pedestrian per frame in bottleneck scenarios
with different widths from 1.0 m to 2.5 m.

It can be observed in figure 13 that in the new model the pedestrians change less their
direction than the pedestrians in the original model, which is in line with the fact that
pedestrians prefer to keep their direction instead of changing it. Compared within the
original model, agents no longer shake frequently.

Finally, we compare the spatiotemporal profile of bottleneck flow when the width is 1.2 m.
In simulations, we initialise pedestrians in the same positions and at the same times as in
the experiment, in order to eliminate the impact of pedestrians’ initial distribution. The
profiles obtained from the experiment, the original speed model as well as the new model are
shown in figure 14. Although profiles obtained from new model are still somewhat different
from the experimental results, a visible enhancement can be observed. The pedestrians do
not deviate strongly from the exit as it can be observed with the original model.

5. Conclusion

In this paper we enhance and generalize the collision-free model [36] by introducing new
components that lead to better dynamics. We firstly complete the collision-free velocity
model by introducing the influence of walls. Then, we generalize the definition of the model
in order to consider dynamical ellipse shapes of pedestrian’s projection on the 2D space,
instead of the originally used circular shapes. Hereby, we define the semi-axes of the ellipses
such that the two-dimensional fundamental diagram is well reproduced with respect to
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Figure 14: Spatiotemporal profile of bottleneck flow, the width of bottleneck is 1.2 m. Pedestrians pass
through the bottleneck from bottom to top.
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experimental data. After introducing a new direction sub-model, we show quantitatively that
the unrealistic behavior of the agents during simulations with the original model could be
mitigated. Simulation results show that the new direction sub-model can remove unrealistic
backward movement and undesired shaking behaviors without compromising the benefits of
the original model.

Our validation of the model was systematic, going from the fundamental diagram in
narrow corridors (1D) through fundamental diagrams in wide corridors (2D) to the flow-
width relation in bottlenecks. Although the generalized model produces better results, there
are still some problems that have not been solved yet. First of all, in bottleneck scenarios
with small widths, a jamming arch may arise. Here, the collision-free nature of the model
favors excessive blocking of agents in front of the exit. Further investigations are necessary
to identify an appropriate mechanism for mitigating the effects of arching. Besides, more
detailed validations will be done in future work.

Acknowledgments

Qiancheng Xu thanks the funding support from the China Scholarship Council (Grant
NO.201706060186). Mohcine Chraibi thanks the support from the Visiting Professor Inter-
national Project at the University of Science and Technology of China (2019A VR35).

References

[1] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht, W. Klingsch, New insights into pedestrian
flow through bottlenecks, Transportation Science 43 (3) (2009) 395-406.

[2] D.C. Duives, W. Daamen, S. P. Hoogendoorn, State-of-the-art crowd motion simulation models, Trans-
portation research part C: emerging technologies 37 (2013) 193-209.

[3] R.L.Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Method-
ological 36 (6) (2002) 507-535.

[4] J. A. Carrillo, S. Martin, M.-T. Wolfram, An improved version of the Hughes model for pedestrian
flow, Mathematical Models and Methods in Applied Sciences 26 (04) (2016) 671-697.

[5] B. Piccoli, A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Archive for
Rational Mechanics and Analysis 199 (3) (2011) 707-738.

[6] S. P. Hoogendoorn, F. L. van Wageningen-Kessels, W. Daamen, D. C. Duives, Continuum modelling
of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, Physica A:
Statistical Mechanics and its Applications 416 (2014) 684 — 694.

[7] A. Lachapelle, M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in
pedestrian crowds, Transportation Research Part B: Methodological 45 (10) (2011) 1572-1589.

[8] M. Burger, M. D. Francesco, P. A. Markowich, M.-T. Wolfram, Mean field games with nonlinear
mobilities in pedestrian dynamics, Discrete & Continuous Dynamical Systems - B 19 (2014) 1311.

[9] A. Aurell, B. Djehiche, Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dy-
namics, STAM Journal on Control and Optimization 56 (1) (2018) 434-455.

[10] Y. Achdou, J.-M. Lasry, Contributions to Partial Differential Equations and Applications, Springer
International Publishing, Cham, 2019, Ch. Mean Field Games for Modeling Crowd Motion, pp. 17-42.

[11] N. Bellomo, A. Bellouquid, On the modelling of vehicular traffic and crowds by kinetic theory of active
particles, in: Mathematical modeling of collective behavior in socio-economic and life sciences, Springer,
2010, pp. 273-296.

[12] C. Dogbe, On the modelling of crowd dynamics by generalized kinetic models, Journal of Mathematical
Analysis and Applications 387 (2) (2012) 512-532.

19



13]
14]
15]
16]
17]
18]
19]
20]
21]

[22]
[23]

24]
25]
26]
27]
28]
20]
30]

[31]

N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, B. Vreugdenhil, Human behaviours in evacuation crowd
dynamics: from modelling to big data toward crisis management, Physics of life reviews 18 (2016) 1-21.
N. Bellomo, L. Gibelli, N. Outada, On the interplay between behavioral dynamics and social interactions
in human crowds, Kinetic & Related Models 12 (2019) 397.

A. Elmoussaoui, P. Argoul, M. E. Rhabi, A. Hakim, Discrete kinetic theory for 2d modeling of a moving
crowd: Application to the evacuation of a non-connected bounded domain, Computers & Mathematics
with Applications 75 (4) (2018) 1159-1180.

A. Treuille, S. Cooper, Z. Popovié, Continuum crowds, ACM Trans. Graph. 25 (3) (2006) 1160-1168.
K. Rahman, N. A. Ghani, A. A. Kamil, A. Mustafa, M. K. Chowdhury, Modelling pedestrian travel
time and the design of facilities: A queuing approach, PLoS ONE 8(5) (2013) e63503.

A. Tordeux, G. Lammel, F. S. Héanseler, B. Steffen, A mesoscopic model for large-scale simulation of
pedestrian dynamics, Transportation Research Part C: Emerging Technologies 93 (2018) 128 — 147.
G. Puppo, M. Semplice, A. Tosin, G. Visconti, Fundamental diagrams in traffic flow: The case of
heterogeneous kinetic models, Communications in mathematical sciences 14 (2016) 643-669.

G. Visconti, M. Herty, G. Puppo, A. Tosin, Multivalued fundamental diagrams of traffic flow in the
kinetic Fokker-Planck limit, Multiscale Modeling & Simulation 15 (2017) 1267-1293.

N. Bellomo, A. Bellouquid, D. Knopoff, From the microscale to collective crowd dynamics, Multiscale
Modeling & Simulation 11 (3) (2013) 943-963.

E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of pedestrian dynamics, Vol. 12, Springer, 2014.
N. Bellomo, L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian
crowds, Mathematical Models and Methods in Applied Sciences 25 (13) (2015) 2417-2437.

N. Bellomo, C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and
perspectives, STAM review 53 (3) (2011) 409-463.

N. Bellomo, A. Bellouquid, On multiscale models of pedestrian crowds from mesoscopic to macroscopic,
Commun. Math. Sci 13 (7) (2015) 1649-1664.

M. Chraibi, A. Tordeux, A. Schadschneider, A. Seyfried, Modelling of pedestrian and evacuation dy-
namics, Encyclopedia of Complexity and Systems Science (2018) 1-22.

L. Gibelli, N. Bellomo, Crowd Dynamics — Theory, Models, and Safety Problems, Vol. 1, Springer,
2019.

D. Helbing, I. J. Farkas, P. Molnar, T. Vicsek, Simulation of pedestrian crowds in normal and evacuation
situations, Pedestrian and evacuation dynamics 21 (2) (2002) 21-58.

A. Schadschneider, A. Seyfried, Empirical results for pedestrian dynamics and their implications for
modeling, Networks & Heterogeneous Media 6 (2011) 545.

V. J. Blue, J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walk-
ways, Transportation Research Part B: Methodological 35 (3) (2001) 293-312.

C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Simulation of pedestrian dynamics using a
two-dimensional cellular automaton, Physica A: Statistical Mechanics and its Applications 295 (3-4)
(2001) 507-525.

M. Fukui, Y. Ishibashi, Self-organized phase transitions in cellular automaton models for pedestrians,
Journal of the physical society of Japan 68 (8) (1999) 2861-2863.

A. Kirchner, A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular
automaton model for pedestrian dynamics, Physica A: statistical mechanics and its applications 312 (1-
2) (2002) 260-276.

M. Muramatsu, T. Irie, T. Nagatani, Jamming transition in pedestrian counter flow, Physica A: Sta-
tistical Mechanics and its Applications 267 (3-4) (1999) 487-498.

A. Tordeux, A. Seyfried, Collision-free nonuniform dynamics within continuous optimal velocity models,
Physical Review E 90 (4) (2014) 042812.

A. Tordeux, M. Chraibi, A. Seyfried, Collision-free speed model for pedestrian dynamics, in: Traffic
and Granular Flow’15, Springer, 2016, pp. 225-232.

B. Maury, J. Venel, A discrete contact model for crowd motion, ESAIM: Mathematical Modelling and
Numerical Analysis 45 (1) (2011) 145-168.

20



[38]
[39]
[40]

[41]

S. Paris, J. Pettré, S. Donikian, Pedestrian reactive navigation for crowd simulation: a predictive
approach, in: Computer Graphics Forum, Vol. 26, Wiley Online Library, 2007, pp. 665-674.

D. Helbing, P. Molnar, Social force model for pedestrian dynamics, Physical review E 51 (5) (1995)
4282.

M. Chraibi, A. Seyfried, A. Schadschneider, Generalized centrifugal-force model for pedestrian dynam-
ics, Physical Review E 82 (4) (2010) 046111.

D. R. Parisi, M. Gilman, H. Moldovan, A modification of the social force model can reproduce ex-
perimental data of pedestrian flows in normal conditions, Physica A: Statistical Mechanics and its
Applications 388 (17) (2009) 3600-3608.

A. Johansson, D. Helbing, P. K. Shukla, Specification of the social force pedestrian model by evolu-
tionary adjustment to video tracking data, Advances in complex systems 10 (supp02) (2007) 271-288.
J. J. Fruin, Pedestrian planning and design, Tech. rep., New York: Elevator World (1971).

A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, The fundamental diagram of pedestrian movement
revisited, Journal of Statistical Mechanics: Theory and Experiment 2005 (10) (2005) P10002.

R. e.V., Guideline for microscopic evacuation analysis, URL https://rimeaweb.files.wordpress.
com/2016/06/rimea richtlinie_3-0-0_-_d-e.pdf acceded on 01.07.2019 (2016).

E. Ronchi, E. D. Kuligowski, P. A. Reneke, R. D. Peacock, D. Nilsson, The process of verification
and validation of building fire evacuation models, US Department of Commerce, National Institute of
Standards and Technology, 2013.

A. Seyfried, M. Boltes, J. Kéhler, W. Klingsch, A. Portz, T. Rupprecht, A. Schadschneider, B. Steffen,
A. Winkens, Enhanced empirical data for the fundamental diagram and the flow through bottlenecks,
in: Pedestrian and Evacuation Dynamics 2008, Springer, 2010, pp. 145-156.

S. Holl, A. Seyfried, Hermes-an evacuation assistant for mass events, Inside 7 (1) (2009) 60-61.

S. Buchmiiller, U. Weidmann, Parameters of pedestrians, pedestrian traffic and walking facilities, IVT
Schriftenreihe 132 (2006).

21



