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Abstract

The collision-free velocity model is a microscopic pedestrian model, which despite its sim-
plicity, reproduces fairly well several self-organization phenomena in pedestrian dynamics.
The model consists of two components: a direction sub-model that combines individual
desired moving direction and neighbor’s influence to imitate the process of navigating in
a two-dimensional space, and an intrinsically collision-free speed sub-model which controls
the speed of the agents with respect to the distance to their neighbors.

In this paper we generalize the collision-free velocity model by introducing the influence
of walls and extending the distance calculations to velocity-based ellipses. Besides, we
introduce enhancements to the direction sub-module that smooth the direction changes of
pedestrians in the simulation; a shortcoming that was not visible in the original model due
to the symmetry of the circular shapes. Moreover, the introduced improvements mitigate
backward movements, leading to a more realistic distribution of pedestrians especially in
bottleneck scenarios.

We study by simulation the effects of the pedestrian’s shape by comparing the funda-
mental diagram in narrow and wide corridors. Furthermore, we validate our generalized
approach by investigating the flow through bottlenecks with varying exit’s widths.

Keywords: Collision-free velocity model, pedestrian dynamics, dynamical ellipse,
fundamental diagram, validation

1. Introduction

Nowadays, the scale of crowd activities is getting bigger with the constant increase in
the world population and the convenience of transport. Although these events usually are
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carefully planned before they are held, the probability of accidents cannot be neglected,
especially when the number of participants is considerably high. Besides, in some complex
buildings, such as train stations, airports, stadiums, and commercial malls, crowd density
can be relatively high, in particular during rush hours. For increasing the comfort and
usability of these facilities, simulations of pedestrian dynamics may help during the design
of buildings and even after their construction to identify potential bottlenecks and mitigate
their effects [1, 2].

In general, models used to describe pedestrian dynamics can be categorized according
to their scale of definition into macroscopic models, mesoscopic models, and microscopic
models. Microscopic models describe individual trajectories of pedestrians while macroscopic
models rely on aggregated quantities e.g. density, velocity, and flow to describe pedestrian
dynamics in partial differential equation systems [3, 4, 5, 6]. For instance, recent macroscopic
approaches rely on mean-field game theory and the coupling of Hamilton-Jacobi-Bellman
and Fokker-Planck equations [7, 8, 9, 10]. The intermediate scale between microscopic
and macroscopic classes is mesoscopic. Kinetic models [11, 12, 13, 14, 15] describing the
crowd through distribution functions with Boltzmann-type equations and discrete queuing
models [16, 17, 18] belong to the mesoscopic modeling category. Mesoscopic models can
take in consideration behavior heterogeneity [18, 19, 20] or stochastic components in the
interaction. Generally speaking, macroscopic and mesoscopic models consider pedestrian
flow as a continuum and deal with large modeling scales, while microscopic models operate
at local scales. Yet a systematic classification of model features according to the model form
is difficult. We refer to [21, 22, 23, 24, 25, 26, 27] for overviews of modeling approaches for
pedestrian dynamics.

We aim in this article to tackle pedestrians’ interactions as well as their granular aspects
(e.g. pedestrian shape and collision-free property) and to describe their dynamics locally in
simple geometries such as corridors and bottlenecks. Objectives are mainly addressed on
the microscopic modeling scale.

Microscopic models are largely used in traffic engineering to simulate pedestrian dy-
namics. They describe pedestrians individually and can naturally take into account the
heterogeneity and stochasticity of the pedestrians’ behavior. Most of the models can repro-
duce fairly well several collective phenomena in pedestrian dynamics [26, 28, 29]. After more
than 50 years of development, many kinds of microscopic models exist in the literature. We
can distinguish between cellular automate models [30, 31, 32, 33, 34] (0th order models),
velocity models [35, 36, 37, 38] (1st order models) and force-based models [39, 40, 41, 42]
(2nd order models). While the former models are discrete in space and computationally
fast, the later models are continuous in space and hence are easier to be used in complex
geometries. Whether continuous models are computationally expensive depends not only
on the order of the model but also on its definition. However, generally speaking, first-order
models are less expensive since their numerical solution involves only one integration step,
while two integration steps are required for second-order models. Furthermore, for numer-
ical reasons fine discretization generally requires small integration time steps. In any case,
microscopic models remain however generally much more computationally expensive than
continuum pedestrian models.
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In this paper, we focus on the extension of the collision-free velocity model introduced in
[36]. The collision-free velocity model (for short CVM) is a velocity-model, composed of a
speed and a direction sub-models. Unlike most force-based models, CVM, being a first-order
model, is by definition collision-free.

We generalize the CVM by considering the influence of walls and integrating two ex-
tensions. First, we change the shape of agents from circle to dynamical ellipse. In the
original model, circles are used to express the projection of the pedestrian’s body on the
two-dimensional plane. However, many references and researches indicate that a dynam-
ical ellipse can represent pedestrian’s shape more accurately since the space a pedestrian
occupied is influenced by the length of the legs during the motion and the lateral sway-
ing of the body [40]. Therefore, we generalize CVM by extending the distance calculation
to velocity-based ellipse and compare the simulation results with the original model (cir-
cles). After introducing the first extension, an unnatural “shaking” was observed during
the simulation, which is caused by the zero-order direction sub-model. We propose a new
first-order direction sub-model, designed to stabilize the direction changes of pedestrians in
the simulation.

For the sake of completeness, we briefly introduce the original CVM in section 2. The
generalization of the model from circle-based to an ellipse-based definition and the new
direction sub-model are presented in section 3. In section 4, the comparison between the
simulation results of a circle and a velocity-based ellipse is given and the performances of
the new direction sub-model are compared to the original CVM. Finally, we give a summary
of the extensions and discuss limitations of the model as well as future research directions
in the concluding section 5.

2. Collision-free velocity model

In the original model, the moving direction and speed of each pedestrian are updated at
each time step. Moving direction of a pedestrian is obtained by superposing the influence
of the surrounding pedestrians and the desired moving direction. The value of the speed
depends on the minimum spacing in the moving direction. In figure 1 (borrowed from [36]),
pedestrians are modeled as circles with constant diameter ℓ. Xi, Xj and Xk are positions of
pedestrians i, j and k. The original CVM is described as

Ẋi(Xi, Xj, . . . ) = Vi(Xi, Xj, . . . ) · ~ei(Xi, Xj, . . . ), (1)

where Vi is the speed of pedestrian i and ~ei is the moving direction.
Moving direction ~ei is obtained from the direction sub-model

~ei(Xi, Xj, ...) = u1 ·
(

~e 0
i +

∑

j∈Ni

R(si,j) · ~ei,j

)

, (2)

where u1 is a normalization constant such that ||~ei|| = 1, ~e 0
i is the desired direction towards

a certain goal, Ni is the set containing all the neighbours of the pedestrian i, ~ei,j is the
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where the definitions of si, ℓ, T are same as in Eq. (4) and

swi = min
v∈JWi

si,v −
ℓ
2

cosαv

, (10)

where JWi is the set containing all the walls in the moving direction of pedestrian i (grey
area in figure 2).

3. Generalization of the collision-free velocity model

In this section we introduce extensions of the CVM. We also show how every extension
influences the resulting dynamics and eventually enhances the simulation results.

3.1. From circle to ellipse

We generalize the collision-free velocity model by extending the distance calculations
to velocity-based ellipses. The plane view of the pedestrian i’s body is represented by an
ellipse [43]. The major semi-axis ai and minor semi-axis bi of the ellipse represent the space
requirement in the direction of motion and along the shoulder axis respectively.

In [40] the semi-axis along the walking direction is defined as

ai = amin + τaVi, (11)

where Vi is the speed of pedestrian i, while amin > 0 and τa > 0 are two parameters.
The idea that the semi-axis of the ellipse along the walking direction vary with speed is

derived from the fact that the spacing a pedestrian needed in her moving direction has a
positive correlation with her speed [44]. This, in turn, is also the role of parameter T which
is defined in the speed sub-model to adjust the gap between agents. We conclude that in our
model T and τa model the same behavior of pedestrians even if their physical interpretations
are different.

This becomes apparent after performing a basic stability analysis of the model. Assuming
an one-dimensional system in steady-state , we can derive from the speed sub-model in
Eq. (4) the following relation

Vsteady =
1/ρsteady − 2 · amin

T̃
, (12)

where Vsteady and ρsteady are the speed and the density of pedestrians flow in steady state,
and T̃ = T + 2τa. Hence, the parameter τa and the parameter T in speed sub-model have
the same influence on the dynamics. To confirm our assumption we perform numerical
simulations by varying these two parameters while maintaining a constant value of T̃ . We
can observe from figure 3 that although the values of τa are different in these simulations,
the results obtained are almost identical when T̃ is constant. In the spirit of Occam’s razor,
we dispense with parameter τa and opt for a constant semi-axis ai.
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is represented as
d~ei(t)

dt
=

~Ei(t)− ~ei(t)

τ
, (21)

where ~ei is the moving direction of the pedestrian i and ~Ei is the optimal moving direction
calculated by Eq. (18). In this step, we change the direction sub-module from zero-order to
first-order, which does not change the global first-order property of the original CVM. By
adjusting τ , a pedestrian can turn to its moving direction smoothly.

Besides, we use a dynamical vision area in this paper, which is the hatching area in
figure 7. Only the pedestrians and walls located in Areai, which is the dynamical vision area
of the pedestrian i, influence the moving direction of the pedestrian i. The set contains all
neighbors of the pedestrian i in Areai is

NArea
i =

{

j, ~ei · ~ei,j < 0 or ~e 0
i · ~ei,j < 0

}

. (22)

Here ~ei,j is the vector from the center of neighbors towards the center of the pedestrian i.
As for the walls, only when two vertices of a wall are both in Areai, this wall influences the
moving direction of the pedestrian i. Vision area of the pedestrian i is decided by his desired
moving direction ~e 0

i and his actual moving direction ~ei. This means a pedestrian choose
the best moving direction according to the neighbors and walls located in the half area in
front of his moving direction and the half area in front of his desired moving direction. The
dynamical vision area is based on the idea that pedestrians will turn their heads to obtain
the environmental information of the areas in front of their desired moving directions if their
actual moving directions deviate from the desired moving directions. Using this dynamical
vision area can eliminate some unrealistic block occurred between agents when using fixed
vision area in the simulation.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 7: Dynamical vision area. Xi is the position, Areai is the hatching area, ~e 0

i
is the desired moving

direction towards the exit, and ~ei is the actual moving direction of pedestrian i.

These enhancements can almost eliminate the phenomena of backward movement and
“shaking” in the simulation, as shown in figure 8.
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experimental data. After introducing a new direction sub-model, we show quantitatively that
the unrealistic behavior of the agents during simulations with the original model could be
mitigated. Simulation results show that the new direction sub-model can remove unrealistic
backward movement and undesired shaking behaviors without compromising the benefits of
the original model.

Our validation of the model was systematic, going from the fundamental diagram in
narrow corridors (1D) through fundamental diagrams in wide corridors (2D) to the flow-
width relation in bottlenecks. Although the generalized model produces better results, there
are still some problems that have not been solved yet. First of all, in bottleneck scenarios
with small widths, a jamming arch may arise. Here, the collision-free nature of the model
favors excessive blocking of agents in front of the exit. Further investigations are necessary
to identify an appropriate mechanism for mitigating the effects of arching. Besides, more
detailed validations will be done in future work.
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