000864848 001__ 864848
000864848 005__ 20230127125336.0
000864848 0247_ $$2doi$$a10.3390/ijerph16173130
000864848 0247_ $$2ISSN$$a1660-4601
000864848 0247_ $$2ISSN$$a1661-7827
000864848 0247_ $$2Handle$$a2128/22736
000864848 0247_ $$2altmetric$$aaltmetric:65718413
000864848 0247_ $$2pmid$$apmid:31466302
000864848 0247_ $$2WOS$$aWOS:000487037500125
000864848 037__ $$aFZJ-2019-04495
000864848 041__ $$aEnglish
000864848 082__ $$a610
000864848 1001_ $$0P:(DE-HGF)0$$aArano, Keith April G.$$b0
000864848 245__ $$aThe Use of the Internet of Things for Estimating Personal Pollution Exposure
000864848 260__ $$aBasel$$bMDPI AG$$c2019
000864848 3367_ $$2DRIVER$$aarticle
000864848 3367_ $$2DataCite$$aOutput Types/Journal article
000864848 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568269365_2419
000864848 3367_ $$2BibTeX$$aARTICLE
000864848 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864848 3367_ $$00$$2EndNote$$aJournal Article
000864848 520__ $$aThis paper proposes a framework for an Air Quality Decision Support System (AQDSS), and as a proof of concept, develops an Internet of Things (IoT) application based on this framework. This application was assessed by means of a case study in the City of Madrid. We employed different sensors and combined outdoor and indoor data with spatiotemporal activity patterns to estimate the Personal Air Pollution Exposure (PAPE) of an individual. This pilot case study presents evidence that PAPE can be estimated by employing indoor air quality monitors and e-beacon technology that have not previously been used in similar studies and have the advantages of being low-cost and unobtrusive to the individual. In future work, our IoT application can be extended to include prediction models, enabling dynamic feedback about PAPE risks. Furthermore, PAPE data from this type of application could be useful for air quality policy development as well as in epidemiological studies that explore the effects of air pollution on certain diseases.
000864848 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000864848 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000864848 588__ $$aDataset connected to CrossRef
000864848 7001_ $$0P:(DE-HGF)0$$aSun, Shengjing$$b1
000864848 7001_ $$0P:(DE-HGF)0$$aOrdieres-Mere, Joaquin$$b2
000864848 7001_ $$0P:(DE-Juel1)177767$$aGong, Bing$$b3$$eCorresponding author
000864848 770__ $$aIntegrated human exposure to air pollution
000864848 773__ $$0PERI:(DE-600)2175195-X$$a10.3390/ijerph16173130$$gVol. 16, no. 17, p. 3130 -$$n17$$p3130$$tInternational journal of environmental research and public health$$v16$$x1660-4601$$y2019
000864848 8564_ $$uhttps://juser.fz-juelich.de/record/864848/files/IoTpaper.pdf$$yOpenAccess
000864848 8564_ $$uhttps://juser.fz-juelich.de/record/864848/files/IoTpaper.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864848 909CO $$ooai:juser.fz-juelich.de:864848$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177767$$aForschungszentrum Jülich$$b3$$kFZJ
000864848 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000864848 9141_ $$y2019
000864848 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864848 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index
000864848 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864848 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J ENV RES PUB HE : 2017
000864848 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000864848 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000864848 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000864848 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864848 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864848 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000864848 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864848 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000864848 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000864848 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864848 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864848 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864848 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864848 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864848 920__ $$lno
000864848 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000864848 980__ $$ajournal
000864848 980__ $$aVDB
000864848 980__ $$aUNRESTRICTED
000864848 980__ $$aI:(DE-Juel1)JSC-20090406
000864848 9801_ $$aFullTexts