001     864848
005     20230127125336.0
024 7 _ |a 10.3390/ijerph16173130
|2 doi
024 7 _ |a 1660-4601
|2 ISSN
024 7 _ |a 1661-7827
|2 ISSN
024 7 _ |a 2128/22736
|2 Handle
024 7 _ |a altmetric:65718413
|2 altmetric
024 7 _ |a pmid:31466302
|2 pmid
024 7 _ |a WOS:000487037500125
|2 WOS
037 _ _ |a FZJ-2019-04495
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Arano, Keith April G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The Use of the Internet of Things for Estimating Personal Pollution Exposure
260 _ _ |a Basel
|c 2019
|b MDPI AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568269365_2419
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper proposes a framework for an Air Quality Decision Support System (AQDSS), and as a proof of concept, develops an Internet of Things (IoT) application based on this framework. This application was assessed by means of a case study in the City of Madrid. We employed different sensors and combined outdoor and indoor data with spatiotemporal activity patterns to estimate the Personal Air Pollution Exposure (PAPE) of an individual. This pilot case study presents evidence that PAPE can be estimated by employing indoor air quality monitors and e-beacon technology that have not previously been used in similar studies and have the advantages of being low-cost and unobtrusive to the individual. In future work, our IoT application can be extended to include prediction models, enabling dynamic feedback about PAPE risks. Furthermore, PAPE data from this type of application could be useful for air quality policy development as well as in epidemiological studies that explore the effects of air pollution on certain diseases.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sun, Shengjing
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ordieres-Mere, Joaquin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gong, Bing
|0 P:(DE-Juel1)177767
|b 3
|e Corresponding author
770 _ _ |a Integrated human exposure to air pollution
773 _ _ |a 10.3390/ijerph16173130
|g Vol. 16, no. 17, p. 3130 -
|0 PERI:(DE-600)2175195-X
|n 17
|p 3130
|t International journal of environmental research and public health
|v 16
|y 2019
|x 1660-4601
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864848/files/IoTpaper.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864848/files/IoTpaper.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864848
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177767
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J ENV RES PUB HE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21