001     864849
005     20210130002738.0
024 7 _ |a 10.1016/j.rse.2019.04.030
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a altmetric:63531614
|2 altmetric
024 7 _ |a WOS:000484643900025
|2 WOS
037 _ _ |a FZJ-2019-04496
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Mohammed, Gina H.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1567771139_17493
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in tandem with state-of-the-art algorithms to distinguish the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatio-temporally explicit information about photosynthetic light responses and steady-state behaviour in vegetation. Progress in this field is accelerating with innovative sensor developments, retrieval methods, and modelling advances. This review distills the historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based systems, and applications of these capabilities in evaluation of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Colombo, Roberto
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Middleton, Elizabeth M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 3
700 1 _ |a van der Tol, Christiaan
|0 0000-0002-2484-8191
|b 4
700 1 _ |a Nedbal, Ladislav
|0 P:(DE-Juel1)159592
|b 5
700 1 _ |a Goulas, Yves
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pérez-Priego, Oscar
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Damm, Alexander
|0 0000-0001-8965-3427
|b 8
700 1 _ |a Meroni, Michele
|0 0000-0002-2976-603X
|b 9
700 1 _ |a Joiner, Joanna
|0 0000-0003-4278-1020
|b 10
700 1 _ |a Cogliati, Sergio
|0 0000-0002-7192-2032
|b 11
700 1 _ |a Verhoef, Wouter
|0 0000-0003-4696-2144
|b 12
700 1 _ |a Malenovský, Zbyněk
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gastellu-Etchegorry, Jean-Philippe
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Miller, John R.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Guanter, Luis
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Moreno, Jose
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Moya, Ismael
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Berry, Joseph A.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Frankenberg, Christian
|0 0000-0002-0546-5857
|b 20
700 1 _ |a Zarco-Tejada, Pablo J.
|0 P:(DE-HGF)0
|b 21
773 _ _ |a 10.1016/j.rse.2019.04.030
|g Vol. 231, p. 111177 -
|0 PERI:(DE-600)1498713-2
|p 111177 -
|t Remote sensing of environment
|v 231
|y 2019
|x 0034-4257
909 C O |o oai:juser.fz-juelich.de:864849
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)159592
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21