001     864851
005     20210130002739.0
024 7 _ |a 10.3390/rs11080962
|2 doi
024 7 _ |a 2128/23063
|2 Handle
024 7 _ |a altmetric:59694740
|2 altmetric
024 7 _ |a WOS:000467646800072
|2 WOS
037 _ _ |a FZJ-2019-04498
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Pilar Cendrero-Mateo, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Sun-Induced Chlorophyll Fluorescence III: Benchmarking Retrieval Methods and Sensor Characteristics for Proximal Sensing
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1570020759_19849
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM)) for a combination of off-the-shelf commercial spectrometers. Secondly, we evaluated how an erroneous implementation of the retrieval methods increases the uncertainty in the estimated SIF values. Results show that the SFM approach applied to high-resolution spectra provided the most reliable SIF retrieval with a relative error (RE) ≤6% and <5% for F687 and F760, respectively. Furthermore, although the SFM was the least affected by an inaccurate definition of the absorption spectral window (RE = 5%) and/or interpolation strategy (RE = 15–30%), we observed a sensitivity of the SIF retrieval for the simulated training data underlying the SFM model implementation
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wieneke, Sebastian
|0 P:(DE-Juel1)165632
|b 1
700 1 _ |a Damm, Alexander
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alonso, Luis
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pinto, Francisco
|0 P:(DE-Juel1)138884
|b 4
700 1 _ |a Moreno, Jose
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Guanter, Luis
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Celesti, Marco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rossini, Micol
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sabater, Neus
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Cogliati, Sergio
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Julitta, Tommaso
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 12
|u fzj
700 1 _ |a Goulas, Yves
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Aasen, Helge
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Pacheco-Labrador, Javier
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Mac Arthur, Alasdair
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.3390/rs11080962
|g Vol. 11, no. 8, p. 962 -
|0 PERI:(DE-600)2513863-7
|n 8
|p 962
|t Remote sensing
|v 11
|y 2019
|x 2072-4292
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864851/files/remotesensing-11-00962-v2.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864851/files/remotesensing-11-00962-v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864851
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21