001     864919
005     20210130002752.0
037 _ _ |a FZJ-2019-04522
100 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin 2019
|c Bremen
|d 2019-04-03 - 2019-04-06
|w Germany
245 _ _ |a Combined FET PET/MRI radiomics differentiates radiation injury from brain metastasis recurrence
260 _ _ |c 2019
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1567761646_26832
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a L6Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasisP. Lohmann1, M. Kocher1, G. Ceccon2, E. K. Bauer2, G. Stoffels1, S. Viswanathan1, M. I. Ruge3, B. Neumaier1, N. J. Shah1, G. R. Fink2, K. Langen1, N. Galldiks21Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich; 2University of Cologne, Dept. of Neurology, Cologne; 3University of Cologne, Dept. of Stereotaxy and Functional Neurosurgery, CologneZiel/Aim:The aim of this study was to investigate the potential of combined textural feature analysis of contrast-enhanced MRI (CE-MRI) and static O-(2-[F-18]fluoroethyl)-L-tyrosine (FET) PET for the differentiation between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive.Methodik/Methods:Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy (predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET. Based on histology (n = 19) or clinicoradiological follow-up (n = 33), local recurrent brain metastases were diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%). Forty-two textural features were calculated on both unfiltered and filtered CE-MRI and summed FET PET images (20 - 40 min p.i.), using the software LIFEx. After feature selection, logistic regression models using a maximum of five features to avoid overfitting were calculated for each imaging modality separately and for the combined FET PET/MRI features. The resulting models were validated using cross-validation. Diagnostic accuracies were calculated for each imaging modality separately as well as for the combined model.Ergebnisse/Results:For the differentiation between radiation injury and recurrence of brain metastasis, textural features extracted from CE-MRI had a diagnostic accuracy of 81% (sensitivity, 67%; specificity, 90%). FET PET textural features revealed a slightly higher diagnostic accuracy of 83% (sensitivity, 88%; specificity, 75%). However, the highest diagnostic accuracy was obtained when combining CE-MRI and FET PET features (accuracy, 89%; sensitivity, 85%; specificity, 96%).Schlussfolgerungen/Conclusions:Our findings suggest that combined FET PET/MRI radiomics using textural feature analysis offers a great potential to contribute significantly to the management of patients with brain metastases.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
700 1 _ |a Kocher, M.
|0 P:(DE-Juel1)173675
|b 1
|u fzj
700 1 _ |a Ceccon, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bauer, E. K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stoffels, G.
|0 P:(DE-Juel1)131627
|b 4
|u fzj
700 1 _ |a Viswanathan, S.
|0 P:(DE-Juel1)162395
|b 5
|u fzj
700 1 _ |a Ruge, M. I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neumaier, B.
|0 P:(DE-Juel1)166419
|b 7
|u fzj
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 8
|u fzj
700 1 _ |a Fink, G. R.
|0 P:(DE-Juel1)131720
|b 9
|u fzj
700 1 _ |a Langen, K. J.
|0 P:(DE-Juel1)131777
|b 10
|u fzj
700 1 _ |a Galldiks, N.
|0 P:(DE-Juel1)143792
|b 11
|u fzj
856 4 _ |u https://www.nuklearmedizin.de/jahrestagungen/abstr_online2019/abstract_detail.php?navId=227&aId=10
909 C O |o oai:juser.fz-juelich.de:864919
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21