001     864928
005     20210130002759.0
024 7 _ |a 10.1016/j.bmc.2019.115044
|2 doi
024 7 _ |a 0968-0896
|2 ISSN
024 7 _ |a 1464-3391
|2 ISSN
024 7 _ |a pmid:31443950
|2 pmid
024 7 _ |a WOS:000484396400012
|2 WOS
037 _ _ |a FZJ-2019-04531
082 _ _ |a 610
100 1 _ |a Wang, Chenyin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The tetrahydroxanthone-dimer phomoxanthone A is a strong inducer of apoptosis in cisplatin-resistant solid cancer cells
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568265078_2892
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Platinum compounds are the first-line therapy for many types of cancer. However, drug resistance has frequently been reported for and is a major limitation of platinum-based chemotherapy in the clinic. In the current study, we examined the anti-tumor activity of phomoxanthone A (PXA), a tetrahydroxanthone dimer isolated from the endophytic fungus Phomopsis longicolla, in several solid cancer cell lines and their cisplatin-resistant sub-cell lines. PXA showed strong cytotoxic effects with IC50 values in the high nanomolar or low micromolar range in MTT assays. IC50 values of PXA were lower than those of cisplatin. Remarkably, equipotent anti-cancer activity was found in cisplatin-sensitive and respective cisplatin-resistant cells. Anticancer effects of PXA were studied in further detail in ovarian cancer (A2780) and bladder cancer (J82) cell pairs. PXA led to rapid depolarization of the mitochondrial membrane potential and strong activation of caspase 3 and 7, eventually resulting in strong induction of apoptosis. These effects occurred again both in sensitive and resistant cell lines. IC50 values of PXA from MTT and mitochondrial membrane depolarization assays were in good agreement. Configurational free energy computations indicate that both the neutral and singly negatively charged PXA show membrane partitioning and can penetrate the inner mitochondrial membrane. PXA treatment did not damage the plasma membranes of cancer cells, thus excluding unspecific membrane effects. Further, PXA had neither an effect on intracellular ROS nor on reduction of ROS after hydrogen peroxide treatment. In conclusion, our studies present PXA as a natural compound with strong apoptotic anticancer effects against platinum-resistant solid cancers. This may open new treatment options in clinically resistant malignancies.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Engelke, Laura
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bickel, David
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hamacher, Alexandra
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Frank, Marian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Proksch, Peter
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 6
|u fzj
700 1 _ |a Kassack, Matthias U.
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.bmc.2019.115044
|g p. 115044 -
|0 PERI:(DE-600)1501507-5
|n 19
|p 115044
|t Bioorganic & medicinal chemistry
|v 27
|y 2019
|x 0968-0896
909 C O |o oai:juser.fz-juelich.de:864928
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOORGAN MED CHEM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21