000864930 001__ 864930
000864930 005__ 20210130002800.0
000864930 0247_ $$2doi$$a10.1016/j.bmc.2019.115080
000864930 0247_ $$2ISSN$$a0968-0896
000864930 0247_ $$2ISSN$$a1464-3391
000864930 0247_ $$2Handle$$a2128/23059
000864930 0247_ $$2pmid$$apmid:31519378
000864930 0247_ $$2WOS$$aWOS:000488203800001
000864930 037__ $$aFZJ-2019-04533
000864930 082__ $$a610
000864930 1001_ $$0P:(DE-HGF)0$$aBickel, David$$b0
000864930 245__ $$aC-terminal Modulators of Heat Shock Protein of 90 kDa (HSP90): State of Development and Modes of Action
000864930 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000864930 3367_ $$2DRIVER$$aarticle
000864930 3367_ $$2DataCite$$aOutput Types/Journal article
000864930 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570005676_13644
000864930 3367_ $$2BibTeX$$aARTICLE
000864930 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864930 3367_ $$00$$2EndNote$$aJournal Article
000864930 520__ $$aCells constantly need to adopt to changing environmental conditions, maintaining homeostasis and proteostasis. Heat shock proteins are a diverse class of molecular chaperones that assist proteins in folding to prevent stress-induced misfolding and aggregation. The heat shock protein of 90 kDa (HSP90) is the most abundant heat shock protein. While basal expression of HSP90 is essential for cell survival, in many tumors elevated HSP90 levels are found, which is often associated with bad prognosis. Therefore, HSP90 has emerged as a major target in tumor therapy. The HSP90 machinery is very complex in that it involves large conformational changes during the chaperoning cycle and a variety of co-chaperones. At the same time, this complexity offers a plethora of possibilities to interfere with HSP90 function. The best characterized class of HSP90 modulators are competitive inhibitors targeting the N-terminal ATP-binding pocket. Nineteen compounds of this class entered clinical trials. However, due to severe adverse effects, including induction of the heat shock response, no N-terminal inhibitor has been approved by the FDA so far. As alternatives, compounds commonly referred to as “C-terminal inhibitors” have been developed, either as natural product-based analogues or by rational design, which employ multiple mechanisms to modulate HSP90 function, including modulation of the interaction with co-chaperones, induction of conformational changes that influence the chaperoning cycle, or inhibition of C-terminal dimerization. In this review, we summarize the current development state of characteristic C-terminal inhibitors, with an emphasis on their (proposed) molecular modes of action and binding sites.
000864930 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000864930 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000864930 588__ $$aDataset connected to CrossRef
000864930 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b1$$eCorresponding author$$ufzj
000864930 773__ $$0PERI:(DE-600)1501507-5$$a10.1016/j.bmc.2019.115080$$gp. 115080 -$$n21$$p115080$$tBioorganic & medicinal chemistry$$v27$$x0968-0896$$y2019
000864930 8564_ $$uhttps://juser.fz-juelich.de/record/864930/files/Hsp90_CT_inhib_review_final.pdf$$yPublished on 2019-08-26. Available in OpenAccess from 2021-08-26.
000864930 8564_ $$uhttps://juser.fz-juelich.de/record/864930/files/Hsp90_CT_inhib_review_final.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-08-26. Available in OpenAccess from 2021-08-26.
000864930 909CO $$ooai:juser.fz-juelich.de:864930$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b1$$kFZJ
000864930 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000864930 9141_ $$y2019
000864930 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864930 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000864930 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000864930 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000864930 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOORGAN MED CHEM : 2017
000864930 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864930 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864930 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864930 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000864930 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000864930 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864930 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000864930 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864930 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000864930 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864930 920__ $$lyes
000864930 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000864930 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000864930 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x2
000864930 9801_ $$aFullTexts
000864930 980__ $$ajournal
000864930 980__ $$aVDB
000864930 980__ $$aUNRESTRICTED
000864930 980__ $$aI:(DE-Juel1)JSC-20090406
000864930 980__ $$aI:(DE-Juel1)NIC-20090406
000864930 980__ $$aI:(DE-Juel1)ICS-6-20110106
000864930 981__ $$aI:(DE-Juel1)IBI-7-20200312