000864931 001__ 864931
000864931 005__ 20240313103119.0
000864931 037__ $$aFZJ-2019-04534
000864931 041__ $$aEnglish
000864931 1001_ $$0P:(DE-Juel1)162473$$aKorvasová, Karolína$$b0$$eCorresponding author$$ufzj
000864931 1112_ $$aBernstein Conference$$cBerlin$$d2019-09-17 - 2019-09-21$$wGermany
000864931 245__ $$aOptical stimulation evokes sustained activity in the isolated medial septum
000864931 260__ $$c2019
000864931 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1567771594_14354
000864931 3367_ $$033$$2EndNote$$aConference Paper
000864931 3367_ $$2BibTeX$$aINPROCEEDINGS
000864931 3367_ $$2DRIVER$$aconferenceObject
000864931 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000864931 3367_ $$2ORCID$$aOTHER
000864931 520__ $$aThe processing of spatially related input during locomotion involves oscillatory hippocampal (HPC) activity in the theta band. It is known that the medial septum (MS) plays a central role in the generation of HPC theta activity, but the underlying mechanisms have not yet been described. Fuhrmann et al. [1] have shown that a brief stimulation of glutamatergic (VGluT2) neurons in the mouse MS in vivo evokes sustained theta activity in the HPC local-field potential (LFP), lasting for at least 10 seconds and preceding the onset of locomotion. Blocking of glutamatergic synapses in the MS suppresses sustained theta activity.Here, we investigate to what extent the MS alone can generate sustained activity. To this end, we study responses of individual MS neurons to optical stimulation in acute mouse MS slices recorded by microelectrode arrays (MEAs). MS slices exhibit spontaneous activity, with a fraction of neurons being active at rates of 5-15 spikes/s. Brief 1-second optical stimulation of VGluT2 neurons consistently leads to a sustained increase in the activity in some of the MS neurons, lasting for several, sometimes more than 10 seconds. The same effect is observed in slices with blocked glutamatergic and/or GABAergic connections (see Figure 1). Irrespective of the blocking condition, we do not detect any signs of spike-train synchronization or spatial clustering of stimulus evoked sustained activity. Stimulation of parvalbumin-expressing (PV) neurons does not lead to any significant firing rate modulation after stimulus offset.We conclude that the isolated MS is capable of generating sustained activity at time scales comparable to those found in the HPC [1]. The generation of this sustained activity seems to be the result of a bistable dynamics of individual VGluT2 neurons, and does not rely on synaptic interactions within the MS network. Single neurons exhibiting bistable dynamics have been described in earlier studies [2,3].It remains to be shown how coherent HPC theta activity can emerge from asynchronous sustained activation of MS neurons, and to what extent the stimulus-evoked generation of sustained HPC theta activity relies on direct projections from VGluT2 neurons to the HPC. Future work is further dedicated to a systematic comparison between the characteristics (duration, stimulus efficiency) of sustained spiking activity in the MS, sustained theta activity in HPC LFPs, and behavioral responses.
000864931 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000864931 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000864931 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000864931 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000864931 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000864931 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x5
000864931 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b1$$ufzj
000864931 8564_ $$uhttps://juser.fz-juelich.de/record/864931/files/example_figure.pdf$$yRestricted
000864931 909CO $$ooai:juser.fz-juelich.de:864931$$pec_fundedresources$$pVDB$$popenaire
000864931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162473$$aForschungszentrum Jülich$$b0$$kFZJ
000864931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b1$$kFZJ
000864931 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000864931 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000864931 9141_ $$y2019
000864931 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000864931 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000864931 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000864931 980__ $$aabstract
000864931 980__ $$aVDB
000864931 980__ $$aI:(DE-Juel1)INM-6-20090406
000864931 980__ $$aI:(DE-Juel1)IAS-6-20130828
000864931 980__ $$aI:(DE-Juel1)INM-10-20170113
000864931 980__ $$aUNRESTRICTED
000864931 981__ $$aI:(DE-Juel1)IAS-6-20130828